化学学报 ›› 2021, Vol. 79 ›› Issue (10): 1181-1196.DOI: 10.6023/A21060253 上一篇 下一篇
综述
刘庆琳a, 任保轶a,*(), 孙亚光a,*(), 解令海b, 黄维b
投稿日期:
2021-06-07
发布日期:
2021-07-12
通讯作者:
任保轶, 孙亚光
作者简介:
刘庆琳, 沈阳化工大学2020级硕士研究生, 研究方向为有机半导体分子的合成与器件性能. |
任保轶, 副教授, 2000年于东北师范大学获应用化学学士学位, 并在沈阳化工大学工作至今. 2012年于东北大学获得工学博士学位. 2016年在劳伦斯伯克利国家实验室(Lawrence Berkeley National Laboratory)访学交流. 目前主要从事有机半导体材料设计和器件性能研究. |
孙亚光, 博士, 沈阳化工大学教授, 现为辽宁省无机分子基化学重点实验室主任. 主要从事MOFs/COFs基微纳米晶体的多相催化和光电器件研究. |
基金资助:
Qing-Lin Liua, Bao-Yi Rena(), Ya-Guang Suna(), Ling-Hai Xieb, Wei Huangb
Received:
2021-06-07
Published:
2021-07-12
Contact:
Bao-Yi Ren, Ya-Guang Sun
Supported by:
文章分享
近10年, 第三代光电能源转换技术钙钛矿太阳能电池(PSCs)正迅速崛起. 基于有机-无机杂化钙钛矿材料的本征半导体特性以及PSCs平面多层器件架构特点, 采用有机小分子空穴传输材料(HTMs)作为PSCs的p-型层, 不仅实现了PSCs器件的全固态化, 且大幅提升了器件效率及稳定性. 以当前通用的标准空穴传输材料spiro-OMeTAD (2,2′,7,7′-四[N,N-二(4-甲氧基苯基)氨基]-9,9′-螺二芴)为模板, 研究人员开展了众多结构剖析和改进工作. 分子spiro-OMeTAD中, 三维螺二芴(SBF)核能以较小的空间集成更多的空穴传输单元; 而芳胺优异的p-型特性, 使其成为高效的电活性单元. 经典螺芳核SBF制备成本高, 可修饰位置单一; 因此, 基于spiro-OMeTAD的结构改进主要围绕芳胺单元的修饰开展. 随着HTMs分子设计以及合成方法学的进展, 近5年来, 一系列低成本、高性能的类SBF螺芳基单元逐渐兴起, 并迅速进入空穴传输材料领域, 如: 螺[芴-9,9′-氧杂蒽]、螺吖啶、螺硫杂蒽等. 螺芳基核结构的日益丰富, 大大拓展了HTMs分子的设计空间, 从而推动了PSCs效率和稳定性的不断提升. 因此, 本综述聚焦含螺芳烃骨架的HTMs分子, 根据其器件性能表现, 分析高性能材料的结构要素. 按照螺芳烃核结构对高性能HTMs进行分类归纳, 总结了结构设计思路和构效关系. 期望通过较为全面的评述, 为HTMs分子构建提供可参考的策略, 从而推动PSCs继续向高效率、长寿命的实用化方向发展.
刘庆琳, 任保轶, 孙亚光, 解令海, 黄维. 螺芳基钙钛矿太阳能电池空穴传输材料研究进展[J]. 化学学报, 2021, 79(10): 1181-1196.
Qing-Lin Liu, Bao-Yi Ren, Ya-Guang Sun, Ling-Hai Xie, Wei Huang. Research Progress of Hole Transport Materials Based on Spiro Aromatic-Skeleton in Perovskite Solar Cells[J]. Acta Chimica Sinica, 2021, 79(10): 1181-1196.
HTMs | HOMO/eV | LUMO/eV | σ/(S•cm-1) | μh/(cm2•V-1•s-1) | Voc/V | Jsc/(mA•cm-2) | FF | PCE/% | Ref. |
---|---|---|---|---|---|---|---|---|---|
pm-spiro-OMeTAD | –5.31 | –2.31 | — | — | 1.01 | 21.1 | 65.2 | 13.9 | [ |
po-spiro-OMeTAD | –5.22 | –2.18 | — | — | 1.02 | 21.2 | 77.6 | 16.70 | [ |
pp-spiro-OMeTAD | –5.22 | –2.28 | — | — | 1.00 | 20.7 | 71.1 | 14.90 | [ |
2,4-spiro-OMeTAD | –5.24 | –2.08 | — | — | 0.956 | 25.6 | 70.1 | 17.20 | [ |
3,4-spiro-OMeTAD | –5.26 | –2.16 | — | — | 0.752 | 20.1 | 59.9 | 9.10 | [ |
DM | –5.27 | –2.36 | — | — | 1.11 | 24.8 | 81 | 22.30 | [ |
SC | –5.26 | –2.35 | — | 3.15×10-3 | 1.15 | 23.47 | 80.6 | 21.76 | [ |
ST | –5.31 | –2.34 | — | 1.77×10-3 | 1.06 | 23.05 | 74.4 | 18.18 | [ |
spiro-MeTAD1 | –4.49 | –0.83 | — | 5.0×10-3 | 1.109 | 22.57 | 68.7 | 17.20 | [ |
spiro-MeTAD2 | –4.55 | –0.84 | — | 5.0×10-3 | 1.119 | 22.42 | 68 | 17.05 | [ |
CF-SP-BTh | –5.38 | –3.73 | — | 3.14×10-5 | 1.07 | 18.82 | 71 | 14.28 | [ |
spiro-mF | –5.19 | –2.23 | 2.60×10-4 | 7.47×10-3 | 1.16 | 26.35 | 81.5 | 24.82 | [ |
spiro-oF | –5.06 | –2.04 | 2.25×10-4 | 7.29×10-3 | 1.16 | 26.34 | 80.9 | 24.50 | [ |
spiro-OMeIm | –5.13 | –1.93 | — | 2.2×10-4 | 1.1 | 20.35 | 75 | 16.78 | [ |
spiro-TTB | –5.30 | –2.23 | — | 1.97×10-3 | 1.07 | 22.02 | 78 | 18.38 | [ |
G1 | –5.14 | –2.22 | 9.35×10-5 | 1.03×10-4 | 1.08 | 22.01 | 65 | 15.5 | [ |
Dispiro-OBuTAD | –5.16 | –2.23 | — | 5.73×10-3 | 1.08 | 22.79 | 75 | 18.46 | [ |
spiro-F1 | –5.31 | –2.39 | — | 1.75×10-2 | — | — | — | — | [ |
spiro-F2 | –5.42 | –2.55 | — | 2.60×10-4 | — | — | — | — | [ |
spiro-F3 | –5.10 | –2.38 | — | 7.59×10-3 | — | — | — | — | [ |
HTMs | HOMO/eV | LUMO/eV | σ/(S•cm-1) | μh/(cm2•V-1•s-1) | Voc/V | Jsc/(mA•cm-2) | FF | PCE/% | Ref. |
---|---|---|---|---|---|---|---|---|---|
pm-spiro-OMeTAD | –5.31 | –2.31 | — | — | 1.01 | 21.1 | 65.2 | 13.9 | [ |
po-spiro-OMeTAD | –5.22 | –2.18 | — | — | 1.02 | 21.2 | 77.6 | 16.70 | [ |
pp-spiro-OMeTAD | –5.22 | –2.28 | — | — | 1.00 | 20.7 | 71.1 | 14.90 | [ |
2,4-spiro-OMeTAD | –5.24 | –2.08 | — | — | 0.956 | 25.6 | 70.1 | 17.20 | [ |
3,4-spiro-OMeTAD | –5.26 | –2.16 | — | — | 0.752 | 20.1 | 59.9 | 9.10 | [ |
DM | –5.27 | –2.36 | — | — | 1.11 | 24.8 | 81 | 22.30 | [ |
SC | –5.26 | –2.35 | — | 3.15×10-3 | 1.15 | 23.47 | 80.6 | 21.76 | [ |
ST | –5.31 | –2.34 | — | 1.77×10-3 | 1.06 | 23.05 | 74.4 | 18.18 | [ |
spiro-MeTAD1 | –4.49 | –0.83 | — | 5.0×10-3 | 1.109 | 22.57 | 68.7 | 17.20 | [ |
spiro-MeTAD2 | –4.55 | –0.84 | — | 5.0×10-3 | 1.119 | 22.42 | 68 | 17.05 | [ |
CF-SP-BTh | –5.38 | –3.73 | — | 3.14×10-5 | 1.07 | 18.82 | 71 | 14.28 | [ |
spiro-mF | –5.19 | –2.23 | 2.60×10-4 | 7.47×10-3 | 1.16 | 26.35 | 81.5 | 24.82 | [ |
spiro-oF | –5.06 | –2.04 | 2.25×10-4 | 7.29×10-3 | 1.16 | 26.34 | 80.9 | 24.50 | [ |
spiro-OMeIm | –5.13 | –1.93 | — | 2.2×10-4 | 1.1 | 20.35 | 75 | 16.78 | [ |
spiro-TTB | –5.30 | –2.23 | — | 1.97×10-3 | 1.07 | 22.02 | 78 | 18.38 | [ |
G1 | –5.14 | –2.22 | 9.35×10-5 | 1.03×10-4 | 1.08 | 22.01 | 65 | 15.5 | [ |
Dispiro-OBuTAD | –5.16 | –2.23 | — | 5.73×10-3 | 1.08 | 22.79 | 75 | 18.46 | [ |
spiro-F1 | –5.31 | –2.39 | — | 1.75×10-2 | — | — | — | — | [ |
spiro-F2 | –5.42 | –2.55 | — | 2.60×10-4 | — | — | — | — | [ |
spiro-F3 | –5.10 | –2.38 | — | 7.59×10-3 | — | — | — | — | [ |
HTMs | HOMO/eV | LUMO/eV | σ/(S•cm-1) | μh/(cm2•V-1•s-1) | Voc/V | Jsc/(mA•cm-2) | FF | PCE/% | Ref. |
---|---|---|---|---|---|---|---|---|---|
mp-SFX-3PA | –5.08 | –2.25 | — | 3.3×10-5 | 1.00 | 18.94 | 18.9 | 14.05 | [ |
mp-SFX-2PA | –4.92 | –1.98 | — | 1.5×10-4 | 1.02 | 21.17 | 21.2 | 16.77 | [ |
mm-SFX-3PA | –5.08 | –2.27 | — | 2.2×10-5 | 1.01 | 18.02 | 18.0 | 13.25 | [ |
mm-SFX-2PA | –4.89 | –1.97 | — | 9.9×10-5 | 0.97 | 19.07 | 19.1 | 14.10 | [ |
HTM-FX | –5.17 | –1.06 | — | 1.4×10-4 | 1.16 | 21.2 | 74 | 18.2 | [ |
HTM-F | –5.17 | –1.12 | — | 4×10-5 | 1.08 | 14.7 | 41 | 6.5 | [ |
HTM-X | –5.26 | –1.20 | — | 5×10-5 | 0.88 | 3.8 | 32 | 1.1 | [ |
HTM-X′ | –5.47 | –1.14 | — | 3×10-5 | 0.77 | 1.4 | 26 | 0.2 | [ |
HTM-FX′ | –5.16 | –1.03 | — | 4.8×10-4 | 1.17 | 21.7 | 78 | 19.7 | [ |
X59 | –5.15 | –2.10 | 1.9×10-4 | 5.5×10-5 | 1.13 | 23.4 | 23.4 | 19.8 | [ |
BTPA-4 | –5.35 | –2.45 | 2.18×10-4 | — | 0.946 | 18.91 | 51.5 | 9.21 | [ |
BTPA-5 | –5.37 | –2.48 | 2.69×10-4 | — | 0.959 | 18.70 | 63.0 | 11.30 | [ |
BTPA-6 | –5.34 | –2.43 | 2.47×10-4 | — | 0.978 | 20.57 | 57.5 | 11.57 | [ |
SFX-OMeTAD | –5.16 | –2.20 | 1.4×10-5 | — | 0.96 | 21.2 | 21.2 | 11.1 | [ |
SFXDAnCBZ a | –4.95 | –2.16 | — | 4.28×10-4 | 1.09 | 23.10 | 83 | 20.87 | [ |
Y1 a | –5.35 | –2.46 | — | 1.53×10-4 | 1.05 | 21.35 | 73.9 | 16.29 | [ |
Y2 a | –5.39 | –2.59 | — | 3.97×10-5 | 1.03 | 20.14 | 66.1 | 13.73 | [ |
Y3 a | –5.35 | –2.91 | — | 8.78×10-5 | 0.95 | 10.86 | 76.1 | 15.15 | [ |
X55 | –5.23 | –2.26 | 8.43×10-4 | 6.81×10-4 | 1.15 | 23.4 | 77 | 20.8 | [ |
SFX-DTF1 | –5.16 | –2.53 | — | 1.51×10-4 | 1.03 | 19.23 | 53.8 | 10.67 | [ |
SFX-DTF2 | –5.19 | –2.57 | — | 3.05×10-5 | 0.98 | 19.05 | 47.1 | 8.78 | [ |
X26 | –5.08 | –2.22 | 2.79×10-4 | 4.31×10-4 | 1.11 | 24.3 | 75 | 20.2 | [ |
X36 | 5.12 | –2.14 | 5.05×10-4 | 1.97×10-4 | 1.06 | 23.7 | 76 | 18.9 | [ |
SFX-TPAM a | –5.21 | –2.29 | — | — | 1.01 | 19.12 | 53 | 10.23 | [ |
SFX-TPA a | –5.57 | –2.63 | — | — | 0.64 | 15.35 | 39 | 3.83 | [ |
X60 | –4.49 | –2.30 | 1.1×10-4 | 1.9×10-4 | 1.12 | 23.4 | 79 | 20.9 | [ |
spiro-p,o-OMe | –4.82 | –2.38 | 3.7×10-5 | — | 1.03 | 13.5 | 75 | 3.5 | [ |
spiro-Me | –4.88 | –2.25 | 2.5×10-4 | — | 0.68 | 0.16 | 34 | 0.04 | [ |
spiro-SMe | –5.09 | –2.13 | 6.9×10-5 | — | 0.92 | 1.25 | 34 | 0.39 | [ |
spiro-FOMe | –4.96 | –2.17 | 1.9×10-6 | — | 0.77 | 0.04 | 20 | 0.01 | [ |
spiro-H | –5.03 | –2.18 | 2.8×10-5 | — | 0.75 | 0.3 | 14 | 0.04 | [ |
spiro-IA a | –5.24 | –2.70 | 2.10×10-4 | — | 1.04 | 22.14 | 67.9 | 15.66 | [ |
XDB | –5.15 | –2.11 | — | 7. 3×10-5 | 1.02 | 19.9 | 76.1 | 15.5 | [ |
XOP | –5.15 | –2.11 | — | 9.7×10-5 | 1.06 | 19.6 | 76.5 | 15.9 | [ |
XMP | –5.15 | –2.11 | — | 1.3×10-4 | 1.07 | 20.5 | 77.2 | 16.9 | [ |
XPP | –5.15 | –2.11 | — | 1.6×10-4 | 1.06 | 21.3 | 78.4 | 17.7 | [ |
X61 a | –5.11 | –2.09 | 3.98×10-6 | 3.91×10-5 | 0.97 | 18.6 | 44.1 | 8.0 | [ |
X62 a | –5.14 | –2.22 | 5.14×10-6 | 7.95×10-5 | 1.01 | 22.4 | 70.4 | 15.9 | [ |
2mF-X59 | –5.14 | –2.40 | — | 7.14×10-5 | 1.01 | 24.97 | 71.6 | 18.13 | [ |
SFX-o-2F | –5.16 | –2.24 | — | 7.4×10-6 | 1.12 | 17.59 | 48.8 | 9.7 | [ |
SFX-m-2F | –5.18 | –2.30 | — | 6.07×10-5 | 1.16 | 22.64 | 71.9 | 18.86 | [ |
SFX-p-2F | –5.18 | –2.28 | — | 1.79×10-5 | 1.14 | 22.23 | 61.5 | 16.33 | [ |
HTMs | HOMO/eV | LUMO/eV | σ/(S•cm-1) | μh/(cm2•V-1•s-1) | Voc/V | Jsc/(mA•cm-2) | FF | PCE/% | Ref. |
---|---|---|---|---|---|---|---|---|---|
mp-SFX-3PA | –5.08 | –2.25 | — | 3.3×10-5 | 1.00 | 18.94 | 18.9 | 14.05 | [ |
mp-SFX-2PA | –4.92 | –1.98 | — | 1.5×10-4 | 1.02 | 21.17 | 21.2 | 16.77 | [ |
mm-SFX-3PA | –5.08 | –2.27 | — | 2.2×10-5 | 1.01 | 18.02 | 18.0 | 13.25 | [ |
mm-SFX-2PA | –4.89 | –1.97 | — | 9.9×10-5 | 0.97 | 19.07 | 19.1 | 14.10 | [ |
HTM-FX | –5.17 | –1.06 | — | 1.4×10-4 | 1.16 | 21.2 | 74 | 18.2 | [ |
HTM-F | –5.17 | –1.12 | — | 4×10-5 | 1.08 | 14.7 | 41 | 6.5 | [ |
HTM-X | –5.26 | –1.20 | — | 5×10-5 | 0.88 | 3.8 | 32 | 1.1 | [ |
HTM-X′ | –5.47 | –1.14 | — | 3×10-5 | 0.77 | 1.4 | 26 | 0.2 | [ |
HTM-FX′ | –5.16 | –1.03 | — | 4.8×10-4 | 1.17 | 21.7 | 78 | 19.7 | [ |
X59 | –5.15 | –2.10 | 1.9×10-4 | 5.5×10-5 | 1.13 | 23.4 | 23.4 | 19.8 | [ |
BTPA-4 | –5.35 | –2.45 | 2.18×10-4 | — | 0.946 | 18.91 | 51.5 | 9.21 | [ |
BTPA-5 | –5.37 | –2.48 | 2.69×10-4 | — | 0.959 | 18.70 | 63.0 | 11.30 | [ |
BTPA-6 | –5.34 | –2.43 | 2.47×10-4 | — | 0.978 | 20.57 | 57.5 | 11.57 | [ |
SFX-OMeTAD | –5.16 | –2.20 | 1.4×10-5 | — | 0.96 | 21.2 | 21.2 | 11.1 | [ |
SFXDAnCBZ a | –4.95 | –2.16 | — | 4.28×10-4 | 1.09 | 23.10 | 83 | 20.87 | [ |
Y1 a | –5.35 | –2.46 | — | 1.53×10-4 | 1.05 | 21.35 | 73.9 | 16.29 | [ |
Y2 a | –5.39 | –2.59 | — | 3.97×10-5 | 1.03 | 20.14 | 66.1 | 13.73 | [ |
Y3 a | –5.35 | –2.91 | — | 8.78×10-5 | 0.95 | 10.86 | 76.1 | 15.15 | [ |
X55 | –5.23 | –2.26 | 8.43×10-4 | 6.81×10-4 | 1.15 | 23.4 | 77 | 20.8 | [ |
SFX-DTF1 | –5.16 | –2.53 | — | 1.51×10-4 | 1.03 | 19.23 | 53.8 | 10.67 | [ |
SFX-DTF2 | –5.19 | –2.57 | — | 3.05×10-5 | 0.98 | 19.05 | 47.1 | 8.78 | [ |
X26 | –5.08 | –2.22 | 2.79×10-4 | 4.31×10-4 | 1.11 | 24.3 | 75 | 20.2 | [ |
X36 | 5.12 | –2.14 | 5.05×10-4 | 1.97×10-4 | 1.06 | 23.7 | 76 | 18.9 | [ |
SFX-TPAM a | –5.21 | –2.29 | — | — | 1.01 | 19.12 | 53 | 10.23 | [ |
SFX-TPA a | –5.57 | –2.63 | — | — | 0.64 | 15.35 | 39 | 3.83 | [ |
X60 | –4.49 | –2.30 | 1.1×10-4 | 1.9×10-4 | 1.12 | 23.4 | 79 | 20.9 | [ |
spiro-p,o-OMe | –4.82 | –2.38 | 3.7×10-5 | — | 1.03 | 13.5 | 75 | 3.5 | [ |
spiro-Me | –4.88 | –2.25 | 2.5×10-4 | — | 0.68 | 0.16 | 34 | 0.04 | [ |
spiro-SMe | –5.09 | –2.13 | 6.9×10-5 | — | 0.92 | 1.25 | 34 | 0.39 | [ |
spiro-FOMe | –4.96 | –2.17 | 1.9×10-6 | — | 0.77 | 0.04 | 20 | 0.01 | [ |
spiro-H | –5.03 | –2.18 | 2.8×10-5 | — | 0.75 | 0.3 | 14 | 0.04 | [ |
spiro-IA a | –5.24 | –2.70 | 2.10×10-4 | — | 1.04 | 22.14 | 67.9 | 15.66 | [ |
XDB | –5.15 | –2.11 | — | 7. 3×10-5 | 1.02 | 19.9 | 76.1 | 15.5 | [ |
XOP | –5.15 | –2.11 | — | 9.7×10-5 | 1.06 | 19.6 | 76.5 | 15.9 | [ |
XMP | –5.15 | –2.11 | — | 1.3×10-4 | 1.07 | 20.5 | 77.2 | 16.9 | [ |
XPP | –5.15 | –2.11 | — | 1.6×10-4 | 1.06 | 21.3 | 78.4 | 17.7 | [ |
X61 a | –5.11 | –2.09 | 3.98×10-6 | 3.91×10-5 | 0.97 | 18.6 | 44.1 | 8.0 | [ |
X62 a | –5.14 | –2.22 | 5.14×10-6 | 7.95×10-5 | 1.01 | 22.4 | 70.4 | 15.9 | [ |
2mF-X59 | –5.14 | –2.40 | — | 7.14×10-5 | 1.01 | 24.97 | 71.6 | 18.13 | [ |
SFX-o-2F | –5.16 | –2.24 | — | 7.4×10-6 | 1.12 | 17.59 | 48.8 | 9.7 | [ |
SFX-m-2F | –5.18 | –2.30 | — | 6.07×10-5 | 1.16 | 22.64 | 71.9 | 18.86 | [ |
SFX-p-2F | –5.18 | –2.28 | — | 1.79×10-5 | 1.14 | 22.23 | 61.5 | 16.33 | [ |
HTMs | HOMO/eV | LUMO/eV | σ/(S•cm-1) | μh/(cm2•V-1•s-1) | Voc/V | Jsc/(mA•cm-2) | FF | PCE/% | Ref. |
---|---|---|---|---|---|---|---|---|---|
CW3 | –4.92 | –1.89 | 5.92×10-6 | 1.2×10-4 | 0.99 | 16.49 | 67 | 10.94 | [ |
CW4 | –4.92 | –1.88 | 3.54×10-6 | 5.8×10-5 | 1.05 | 21.75 | 72 | 16.56 | [ |
CW5 | –4.93 | –1.89 | 3.09×10-6 | 8.7×10-5 | 1.01 | 15.39 | 70 | 10.76 | [ |
SAF-OMe a | –5.07 | –2.11 | — | 9.9×10-4 | 0.97 | 20.59 | 62 | 17.39 | [ |
SAF-5 | –5.02 | –2.05 | — | 1.73×10-4 | 1.07 | 20.41 | 63 | 13.93 | [ |
SFT-TPAM a | –5.69 | –2.81 | — | — | 1.04 | 12.17 | 25 | 3.16 | [ |
SFT-TPA a | –5.71 | –2.78 | — | — | 0.68 | 11.32 | 37 | 2.85 | [ |
ST | –5.16 | –2.02 | — | 4.75×10-5 | — | — | — | — | [ |
ST2 | –5.14 | –1.95 | — | 1.82×10-4 | — | — | — | — | [ |
DDOF | –5.07 | –2.05 | — | — | 1.10 | 22.37 | 79 | 19.4 | [ |
G2 | –5.22 | –2.27 | 2.77×10-4 | 3.58×10-4 | 1.13 | 23.52 | 76 | 20.2 | [52, 86] |
HTMs | HOMO/eV | LUMO/eV | σ/(S•cm-1) | μh/(cm2•V-1•s-1) | Voc/V | Jsc/(mA•cm-2) | FF | PCE/% | Ref. |
---|---|---|---|---|---|---|---|---|---|
CW3 | –4.92 | –1.89 | 5.92×10-6 | 1.2×10-4 | 0.99 | 16.49 | 67 | 10.94 | [ |
CW4 | –4.92 | –1.88 | 3.54×10-6 | 5.8×10-5 | 1.05 | 21.75 | 72 | 16.56 | [ |
CW5 | –4.93 | –1.89 | 3.09×10-6 | 8.7×10-5 | 1.01 | 15.39 | 70 | 10.76 | [ |
SAF-OMe a | –5.07 | –2.11 | — | 9.9×10-4 | 0.97 | 20.59 | 62 | 17.39 | [ |
SAF-5 | –5.02 | –2.05 | — | 1.73×10-4 | 1.07 | 20.41 | 63 | 13.93 | [ |
SFT-TPAM a | –5.69 | –2.81 | — | — | 1.04 | 12.17 | 25 | 3.16 | [ |
SFT-TPA a | –5.71 | –2.78 | — | — | 0.68 | 11.32 | 37 | 2.85 | [ |
ST | –5.16 | –2.02 | — | 4.75×10-5 | — | — | — | — | [ |
ST2 | –5.14 | –1.95 | — | 1.82×10-4 | — | — | — | — | [ |
DDOF | –5.07 | –2.05 | — | — | 1.10 | 22.37 | 79 | 19.4 | [ |
G2 | –5.22 | –2.27 | 2.77×10-4 | 3.58×10-4 | 1.13 | 23.52 | 76 | 20.2 | [52, 86] |
[1] |
Celik, A. N.; Özgür, E. Renew. Sust. Energ. Rev. 2020, 134, 110344.
doi: 10.1016/j.rser.2020.110344 |
[2] |
Ju, C.-G.; Zhang, B.; Feng, Y.-Q. Prog. Chem. 2016, 28, 219. (in Chinese)
|
(琚成功, 张宝, 冯亚青, 化学进展, 2016, 28, 219.)
doi: 10.7536/PC150311 |
|
[3] |
Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050.
doi: 10.1021/ja809598r |
[4] |
Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html
|
[5] |
Im, J.-H.; Lee, C.-R.; Lee, J.-W.; Park, S.-W.; Park, N.-G. Nanoscale 2011, 3, 4088.
doi: 10.1039/c1nr10867k |
[6] |
Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Science 2012, 338, 643.
doi: 10.1126/science.1228604 |
[7] |
Liu, M.; Johnston, M. B.; Snaith, H. J. Nature 2013, 501, 395.
doi: 10.1038/nature12509 |
[8] |
Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Science 2015, 348, 1234.
doi: 10.1126/science.aaa9272 |
[9] |
Saliba, M.; Orlandi, S.; Matsui, T.; Aghazada, S.; Cavazzini, M.; Correa-Baena, J.-P.; Gao, P.; Scopelliti, R.; Mosconi, E.; Dahmen, K.-H.; De Angelis, F.; Abate, A.; Hagfeldt, A.; Pozzi, G.; Graetzel, M.; Nazeeruddin, M. K. Nat. Energy 2016, 1, 15017.
doi: 10.1038/nenergy.2015.17 |
[10] |
Yang, W. S.; Park, B.-W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.; Seo, J.; Kim, E. K.; Noh, J. H.; Seok, S. I. Science 2017, 356, 1376.
doi: 10.1126/science.aan2301 |
[11] |
Jung, E. H.; Jeon, N. J.; Park, E. Y.; Moon, C. S.; Shin, T. J.; Yang, T.-Y.; Noh, J. H.; Seo, J. Nature 2019, 567, 511.
doi: 10.1038/s41586-019-1036-3 |
[12] |
Chiykowski, V. A.; Cao, Y.; Tan, H.; Tabor, D. P.; Sargent, E. H.; Aspuru-Guzik, A.; Berlinguette, C. P. Angew. Chem. Int. Ed. 2018, 57, 15529.
doi: 10.1002/anie.v57.47 |
[13] |
Goldschmidt, V. M. Naturwissenschaften 1926, 14, 477.
doi: 10.1007/BF01507527 |
[14] |
Eperon, G. E.; Paternò, G. M.; Sutton, R. J.; Zampetti, A.; Haghighirad, A. A.; Cacialli, F.; Snaith, H. J. J. Mater. Chem. A 2015, 3, 19688.
doi: 10.1039/C5TA06398A |
[15] |
Petrus, M. L.; Schlipf, J.; Li, C.; Gujar, T. P.; Giesbrecht, N.; Mueller-Buschbaum, P.; Thelakkat, M.; Bein, T.; Huettner, S.; Docampo, P. Adv. Energy Mater. 2017, 7, 1700264.
doi: 10.1002/aenm.201700264 |
[16] |
Chen, Y.-W.; Hu, T.; Tan, L.-C. Perovskite Solar Cells, Science Press, Beijing, 2020, pp. 16-17.
|
(陈义旺, 胡婷, 谈利承, 钙钛矿太阳能电池, 科学出版社, 北京, 2020, pp. 16-17.)
|
|
[17] |
Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Science 2013, 342, 341.
doi: 10.1126/science.1243982 pmid: 24136964 |
[18] |
Grätzel, M. Nat. Mater. 2014, 13, 838.
doi: 10.1038/nmat4065 |
[19] |
Xiang, W.-C.; Pan, J.-Y.; Chen, Q. ACS Appl. Energy Mater. 2020, 3, 5977.
doi: 10.1021/acsaem.0c00918 |
[20] |
Tsarev, S.; Luchkin, S. Y.; Stevenson, K. J.; Troshin, P. A. Synth. Met. 2020, 268, 116497.
doi: 10.1016/j.synthmet.2020.116497 |
[21] |
Ali, A.; Cha, M. J.; Kang, J. H.; Park, Y. J.; Seo, J. H.; Walker, B. Adv. Eng. Mater. 2020, 22, 2002422.
|
[22] |
Ali, J.; Gao, P.; Zhou, G.-Q.; Li, Y.; Hao, T.-Y.; Song, J.-N.; Xu, J.-Q.; Qian, K.; Zhang, Q.-Z.; Zhu, L.; Zhang, M.; Wang, J.; Feng, W.; Hu, H.-L.; Liu, F. Adv. Electron. Mater. 2020, 6, 2000149.
doi: 10.1002/aelm.v6.12 |
[23] |
Ahmad, T.; Wilk, B.; Radicchi, E.; Fuentes Pineda, R.; Spinelli, P.; Herterich, J.; Castriotta, L. A.; Dasgupta, S.; Mosconi, E.; De Angelis, F.; Kohlstaedt, M.; Wuerfel, U.; Di Carlo, A.; Wojciechowski, K. Adv. Funct. Mater. 2020, 30, 2004357.
doi: 10.1002/adfm.v30.45 |
[24] |
Yang, D.; Yang, R.-X.; Wang, K.; Wu, C.-C.; Zhu, X.-J.; Feng, J.-S.; Ren, X.-D.; Fang, G.-J.; Priya, S.; Liu, S.-Z. Nat. Commun. 2018, 9, 3239.
doi: 10.1038/s41467-018-05760-x |
[25] |
Chiykowski, V. A. The design of hole-transport materials to stabilize the performance of perovskite solar cells, B.Sc., Queen′s University, Kingston, 2019.
|
[26] |
Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E.; Grätzel, M.; Park, N.-G. Sci. Rep. 2012, 2, 591.
doi: 10.1038/srep00591 |
[27] |
Urieta-Mora, J.; García-Benito, I.; Molina-Ontoria, A.; Martín, N. Chem. Soc. Rev. 2018, 47, 8541.
doi: 10.1039/c8cs00262b pmid: 30283961 |
[28] |
Kim, G.-W.; Choi, H.; Kim, M.; Lee, J.; Son, S. Y.; Park, T. Adv. Energy Mater. 2020, 10, 1903403.
doi: 10.1002/aenm.v10.8 |
[29] |
Yin, C.-R.; Lu, J.-F.; Xu, Y.-C.; Yun, Y.-K.; Wang, K.; Li, J.-W.; Jiang, L.-C.; Sun, J.-S.; Scully, A. D.; Huang, F.-Z.; Zhong, J.; Wang, J.-P.; Cheng, Y.-B.; Qin, T.-S.; Huang, W. Adv. Energy Mater. 2018, 8, 1800538.
doi: 10.1002/aenm.v8.21 |
[30] |
Wang, Y.; Zhang, T.-Y.; Xu, F.; Li, Y.-H.; Zhao, Y.-X. Sol. RRL 2018, 2, 1700180.
doi: 10.1002/solr.201700180 |
[31] |
Shi, D.; Qin, X.; Li, Y.; He, Y.; Zhong, C.; Pan, J.; Dong, H.-L.; Xu, W.; Li, T.; Hu, W.-P.; Brédas, J.-L.; Bakr, O. M. Sci. Adv. 2016, 2, e1501491.
doi: 10.1126/sciadv.1501491 |
[32] |
Sheibani, E.; Yang, L.; Zhang, J.-B. Sol. RRL 2020, 4, 2000461.
doi: 10.1002/solr.v4.12 |
[33] |
Kasperski, A.; Szabelski, P. Copern. Lett. 2013, 4, 8.
|
[34] |
Agarwala, P.; Kabra, D. J. Mater. Chem. A 2017, 5, 1348.
doi: 10.1039/C6TA08449D |
[35] |
Pudzich, R.; Fuhrmann-Lieker, T.; Salbeck, J. Adv. Polym. Sci. 2006, 199, 83.
|
[36] |
Saragi, T. P. I.; Spehr, T.; Siebert, A.; Fuhrmann-Lieker, T.; Salbeck, J. Chem. Rev. 2007, 107, 1011.
pmid: 17381160 |
[37] |
Shen, P.; Tang, Y.-H.; Jiang, S.-H.; Chen, H.-J.; Zheng, X.-Y.; Wang, X.-Y.; Bin, Z.; Tan, S.-T. Org. Electron. 2011, 12, 125.
doi: 10.1016/j.orgel.2010.10.016 |
[38] |
Bach, U.; Lupo, D.; Comte, P.; Moser, J. E.; Weissörtel, F.; Salbeck, J.; Spreitzer, H.; Grätzel, M. Nature 1998, 395, 583.
doi: 10.1038/26936 |
[39] |
Clarkson, R. G.; Gomberg, M. J. Am. Chem. Soc. 1930, 52, 2881.
doi: 10.1021/ja01370a048 |
[40] |
Pei, J.; Ni, J.; Zhou, X.-H.; Cao, X.-Y.; Lai, Y.-H. J. Org. Chem. 2002, 67, 4924.
doi: 10.1021/jo011146z |
[41] |
Tour, J. M.; Wu, R.; Schumm, J. S. J. Am. Chem. Soc. 1990, 112, 5662.
doi: 10.1021/ja00170a053 |
[42] |
Jeon, N. J.; Lee, H. G.; Kim, Y. C.; Seo, J.; Noh, J. H.; Lee, J.; Seok, S. I. J. Am. Chem. Soc. 2014, 136, 7837.
doi: 10.1021/ja502824c |
[43] |
Zhang, M.-D.; Zhao, D.-X.; Chen, L.; Pan, N.; Huang, C.-Y.; Cao, H.; Chen, M.-D. Sol. Energy Mater. Sol. Cells 2018, 176, 318.
doi: 10.1016/j.solmat.2017.10.014 |
[44] |
Jeon, N. J.; Na, H.; Jung, E. H.; Yang, T.-Y.; Lee, Y. G.; Kim, G.; Shin, H.-W.; Seok, S. I.; Lee, J.; Seo, J. Nat. Energy 2018, 3, 682.
doi: 10.1038/s41560-018-0200-6 |
[45] |
Deng, Z.-H.; He, M.-S.; Zhang, Y.; Ullah, F.; Ding, K.; Liang, J.-H.; Zhang, Z.-F.; Xu, H.; Qiu, Y.-K.; Xie, Z.; Shan, T.; Chen, Z.-H.; Zhong, H.-L.; Chen, C.-C. Chem. Mater. 2021, 33, 285.
doi: 10.1021/acs.chemmater.0c03772 |
[46] |
Miyasaka, T.; Kulkarni, A.; Kim, G. M.; Oz, S.; Jena, A. K. Adv. Energy Mater. 2020, 10, 1902500.
doi: 10.1002/aenm.v10.13 |
[47] |
Sallenave, X.; Shasti, M.; Anaraki, E. H.; Volyniuk, D.; Grazulevicius, J. V.; Zakeeruddin, S. M.; Mortezaali, A.; Grätzel, M.; Hagfeldt, A.; Sini, G. J. Mater. Chem. A 2020, 8, 8527.
doi: 10.1039/D0TA00623H |
[48] |
Wang, C.; Hu, J.-L.; Li, C.-H.; Qiu, S.-D.; Liu, X.-H.; Zeng, L.-X.; Liu, C.-T.; Mai, Y.-H.; Guo, F. Sol. RRL 2020, 4, 1900389.
doi: 10.1002/solr.v4.3 |
[49] |
Ameen, S.; Akhtar, M. S.; Nazim, M.; Kim, E.-B.; Nazeeruddin, M. K.; Shin, H.-S. Electrochim. Acta 2019, 319, 885.
doi: 10.1016/j.electacta.2019.07.031 |
[50] |
Jeong, M.; Choi, I. W.; Go, E. M.; Cho, Y.; Kim, M.; Lee, B.; Jeong, S.; Jo, Y.; Choi, H. W.; Lee, J.; Bae, J.-H.; Kwak, S. K.; Kim, D. S.; Yang, C. Science 2020, 369, 1615.
doi: 10.1126/science.abb7167 |
[51] |
Hajikhanmirzaei, L.; Shahroosvand, H.; Pashaei, B.; Monache, G. D.; Nazeeruddin, M. K.; Pilkington, M. J. Mater. Chem. C 2020, 8, 6221.
doi: 10.1039/D0TC00196A |
[52] |
Gao, K.; Xu, B.; Hong, C.-S.; Shi, X.-L.; Liu, H.-B.; Li, X.-S.; Xie, L.-H.; Jen, A. K. Y. Adv. Energy Mater. 2018, 8, 1800809.
doi: 10.1002/aenm.v8.22 |
[53] |
Yu, W.; Zhang, J.-H.; Wang, X.-C.; Liu, X.; Tu, D.-D.; Zhang, J.; Guo, X.; Li, C. Sol. RRL 2018, 2, 1800048.
doi: 10.1002/solr.v2.7 |
[54] |
Chi, W.-J.; Li, Q.-S.; Li, Z.-S. Nanoscale 2016, 8, 6146.
doi: 10.1039/C6NR00235H |
[55] |
Liu, K.; Yao, Y.-H.; Wang, J.-Y.; Zhu, L.-F.; Sun, M.-L.; Ren, B.-Y.; Xie, L.-H.; Luo, Y.-H.; Meng, Q.-B.; Zhan, X.-W. Mater. Chem. Front. 2017, 1, 100.
doi: 10.1039/C6QM00097E |
[56] |
Xie, L.-H.; Liu, F.; Tang, C.; Hou, X.-Y.; Hua, Y.-R.; Fan, Q.-L.; Huang, W. Org. Lett. 2006, 8, 2787.
doi: 10.1021/ol060871z |
[57] |
Sun, M.-L.; Ou, C.-J.; Ren, B.-Y.; Xie, L.-H.; Zhao, X.-H.; Huang, W. Gen. Chem. 2020, 6, 190021.
doi: 10.21127/yaoyigc20190021 |
[58] |
Bi, D.-Q.; Xu, B.; Gao, P.; Sun, L.; Graetzel, M.; Hagfeldt, A. Nano Energy 2016, 23, 138.
doi: 10.1016/j.nanoen.2016.03.020 |
[59] |
Xu, B.; Bi, D.-Q.; Hua, Y.; Liu, P.; Cheng, M.; Graetzel, M.; Kloo, L.; Hagfeldt, A.; Sun, L.-C. Energy Environ. Sci. 2016, 9, 873.
doi: 10.1039/C6EE00056H |
[60] |
Xu, B.; Zhang, J.-B.; Hua, Y.; Liu, P.; Wang, L.-Q.; Ruan, C.-Q.; Li, Y.-Y.; Boschloo, G.; Johansson, E. M. J.; Kloo, L.; Hagfeldt, A.; Jen, A. K. Y.; Sun, L.-C. Chem 2017, 2, 676.
doi: 10.1016/j.chempr.2017.03.011 |
[61] |
Maciejczyk, M.; Ivaturi, A.; Robertson, N. J. Mater. Chem. A 2016, 4, 4855.
doi: 10.1039/C6TA00110F |
[62] |
Lee, D. Y.; Sivakumar, G.; Misra, M. R.; Seok, S. I. ACS Appl. Mater. Interfaces 2020, 12, 28246.
doi: 10.1021/acsami.0c06318 |
[63] |
Pham, H. D.; Yang, T. C.-J.; Jain, S. M.; Wilson, G. J.; Sonar, P. Adv. Energy Mater. 2020, 10, 1903326.
doi: 10.1002/aenm.v10.13 |
[64] |
Wu, G.-H.; Zhang, Y.-H.; Kaneko, R.; Kojima, Y.; Sugawa, K.; Chowdhury, T. H.; Islam, A.; Shen, Q.; Akhtaruzzaman, M.; Noda, T.; Otsuki, J. Sol. RRL 2017, 1, 1700096.
doi: 10.1002/solr.201700096 |
[65] |
Zhang, Y.; Wu, F.; Chen, L.; Zhang, F.-Y.; Ji, Y.; Shen, W.; Li, M.; Guo, Q.-X.; Su, W.; He, R.-X. Sol. Energy Mater. Sol. Cells 2020, 212, 110534.
doi: 10.1016/j.solmat.2020.110534 |
[66] |
Zhang, Y.; Li, Y.-Y.; Chen, C.; Wang, L.; Zhang, J.-L. Org. Electron. 2017, 49, 255.
doi: 10.1016/j.orgel.2017.06.064 |
[67] |
Xu, B.-B.; Chakraborty, H.; Remsing, R. C.; Klein, M. L.; Ren, S.-Q. Adv. Mater. 2017, 29, 1605150.
doi: 10.1002/adma.v29.8 |
[68] |
Wu, M.; Li, J.; Zhang, R.-Q.; Tian, X.; Han, Z.-X.; Lu, X.-Q.; Guo, K.-P.; Liu, Z.-K.; Wang, Z.-Q. Org. Lett. 2018, 20, 780.
doi: 10.1021/acs.orglett.7b03918 |
[69] |
Zhang, J.-B.; Xu, B.; Yang, L.; Ruan, C.-Q.; Wang, L.-Q.; Liu, P.; Zhang, W.; Vlachopoulos, N.; Kloo, L.; Boschloo, G.; Sun, L.-C.; Hagfeldt, A.; Johansson, E. M. J. Adv. Energy Mater. 2018, 8, 1701209.
doi: 10.1002/aenm.v8.2 |
[70] |
Govindan, V.; Yang, K.-C.; Fu, Y.-S.; Wu, C.-G. New J. Chem. 2018, 42, 7332.
doi: 10.1039/C8NJ01082J |
[71] |
Abdellah, I. M.; Chowdhury, T. H.; Lee, J.-J.; Islam, A.; Nazeeruddin, M. K.; Gräetzel, M.; El-Shafei, A. Sustain. Energy Fuels 2021, 5, 199.
|
[72] |
Wang, Y.; Liao, Q.-G.; Chen, J.-H.; Huang, W.; Zhuang, X.-M.; Tang, Y.-M.; Li, B.-L.; Yao, X.-Y.; Feng, X.-Y.; Zhang, X.-H.; Su, M.-Y.; He, Z.-B.; Marks, T. J.; Facchetti, A.; Guo, X.-G. J. Am. Chem. Soc. 2020, 142, 16632.
doi: 10.1021/jacs.0c06373 |
[73] |
Xu, B.; Zhu, Z.-L.; Zhang, J.-B.; Liu, H.-B.; Chueh, C.-C.; Li, X.-S.; Jen, A. K. Y. Adv. Energy Mater. 2017, 7, 1700683.
doi: 10.1002/aenm.v7.19 |
[74] |
Wang, L.-Q.; Zhang, J.-B.; Liu, P.; Xu, B.; Zhang, B.-B.; Chen, H.; Inge, A. K.; Li, Y. Y.; Wang, H. X.; Kloo, L.; Sun, L.-C. Chem. Commun. 2018, 54, 9571.
doi: 10.1039/C8CC04026E |
[75] |
Lee, J.; Malekshahi Byranvand, M.; Kang, G.; Son, S. Y.; Song, S.; Kim, G.-W.; Park, T. J. Am. Chem. Soc. 2017, 139, 12175.
doi: 10.1021/jacs.7b04949 |
[76] |
Guo, K.; Wu, M.; Yang, S.; Wang, Z.; Li, J.; Liang, X.; Zhang, F.; Liu, Z.; Wang, Z. Sol. RRL 2019, 3, 1800352.
doi: 10.1002/solr.v3.4 |
[77] |
Yang, S.-M.; Zhao, H.; Wu, M.; Yuan, S.-H.; Han, Y.; Liu, Z.-K.; Guo, K.-P.; Liu, S.-Z.; Yang, S.; Zhao, H.; Yuan, S.; Han, Y.; Liu, Z.; Liu, S.; Wu, M.; Guo, K. Sol. Energy Mater. Sol. Cells 2019, 201, 110052.
doi: 10.1016/j.solmat.2019.110052 |
[78] |
Li, Z.-N.; Yun, Y.-K.; Huang, H.-Y.; Ding, Z.-C.; Li, X.-W.; Zhao, B.-M.; Huang, W. J. Energy Chem. 2020, 57, 341.
doi: 10.1016/j.jechem.2020.08.041 |
[79] |
Li, Y.-C.; Wang, Z.-H.; Li, X.-L.; Xie, G.-Z.; Chen, D.-C.; Wang, Y.-F.; Lo, C.-C.; Lien, A.; Peng, J.-B.; Cao, Y.; Su, S.-J. Chem. Mater. 2015, 27, 1100.
doi: 10.1021/cm504441v |
[80] |
Jiang, Z.-Q.; Liu, Z.-Y.; Yang, C.-L.; Zhong, C.; Qin, J.-G.; Yu, G.; Liu, Y.-Q. Adv. Funct. Mater. 2009, 19, 3987.
doi: 10.1002/(ISSN)1616-3028 |
[81] |
Li, M.-H.; Hsu, C.-W.; Shen, P.-S.; Cheng, H.-M.; Chi, Y.; Chen, P.; Guo, T.-F. Chem. Commun. 2015, 51, 15518.
doi: 10.1039/C5CC04405G |
[82] |
Wang, Y.-K.; Yuan, Z.-C.; Shi, G.-Z.; Li, Y.-X.; Li, Q.; Hui, F.; Sun, B.-Q.; Jiang, Z.-Q.; Liao, L.-S. Adv. Funct. Mater. 2016, 26, 1375.
doi: 10.1002/adfm.201504245 |
[83] |
Zhu, X.-D.; Ma, X.-J.; Wang, Y.-K.; Li, Y.; Gao, C.-H.; Wang, Z.-K.; Jiang, Z.-Q.; Liao, L.-S. Adv. Funct. Mater. 2019, 29, 1807094.
|
[84] |
Deng, J.-D.; Hu, W.-X.; Shen, W.; Li, M.; He, R.-X. Phys. Chem. Chem. Phys. 2019, 21, 1235.
doi: 10.1039/C8CP06693K |
[85] |
Rakstys, K.; Paek, S.; Sohail, M.; Gao, P.; Cho, K. T.; Gratia, P.; Lee, Y.; Dahmen, K. H.; Nazeeruddin, M. K. J. Mater. Chem. A 2016, 4, 18259.
doi: 10.1039/C6TA09028A |
[86] |
Cai, B.; Yang, X.-C.; Wang, H.-X.; Wang, W.-H.; An, J.-C.; Sun, L.-C. J. Energy Chem. 2019, 32, 152.
doi: 10.1016/j.jechem.2018.07.013 |
[87] |
Yavuz, I.; Houk, K. N. J. Phys. Chem. C 2017, 121, 993.
doi: 10.1021/acs.jpcc.6b08624 |
[88] |
Hamada, H.; Itabashi, Y.; Shang, R.; Nakamura, E. J. Am. Chem. Soc. 2020, 142, 2059.
doi: 10.1021/jacs.9b13019 |
[89] |
Liu, H.; Liu, Z.-W.; Li, G.-G.; Huang, H.-N.; Zhou, C.-J.; Wang, Z.-M.; Yang, C.-L. Angew. Chem. Int. Ed. 2021, 60, 12376.
doi: 10.1002/anie.v60.22 |
[1] | 王晓, 王星文, 肖乐辉. 单分子荧光成像研究单颗粒纳米催化机制[J]. 化学学报, 2023, 81(8): 1002-1014. |
[2] | 周静, 田雪迎, 王斌凯, 张沙沙, 刘宗豪, 陈炜. 低温原子层沉积封装技术在OLED上的应用及对有机、钙钛矿太阳能电池封装的启示[J]. 化学学报, 2022, 80(3): 395-422. |
[3] | 武文俊, 李玉婷, 冯茜, 丁文星. 钙钛矿双功能钝化剂: 室温离子液体的机械化学制备[J]. 化学学报, 2022, 80(11): 1469-1475. |
[4] | 卢岳, 葛杨, 隋曼龄. 白光及紫外光辐照下甲氨碘化铅基钙钛矿太阳能电池降解机制差异[J]. 化学学报, 2021, 79(3): 344-352. |
[5] | 高霞, 潘会宾, 贺曾贤, 杨柯, 乔成芳, 刘永亮, 周春生. Al-MOF基多级孔Al2O3固定化酶反应器的构筑及构效关系研究[J]. 化学学报, 2021, 79(12): 1502-1510. |
[6] | 谢佶晟, 肖竹梅, 左文华, 杨勇. 钠离子电池钴酸钠正极材料研究进展[J]. 化学学报, 2021, 79(10): 1232-1243. |
[7] | 封博谞, 庄小东. 碳基介熵材料:理论与实验[J]. 化学学报, 2020, 78(9): 833-847. |
[8] | 杨英, 林飞宇, 朱从潭, 陈甜, 马书鹏, 罗媛, 朱刘, 郭学益. 无机钙钛矿太阳能电池稳定性研究进展[J]. 化学学报, 2020, 78(3): 217-231. |
[9] | 王梦涵, 万里, 高旭宇, 袁文博, 方俊峰, 陶友田, 黄维. D-π-A-π-D型非掺杂小分子空穴传输材料的合成及其在反向钙钛矿太阳能电池中的应用[J]. 化学学报, 2019, 77(8): 741-750. |
[10] | 张昊, 黄龙, 李涛, 刘宾, 白泽明, 李小娜, 陆丹. 聚芴类共轭聚合物(PFs)从溶液到薄膜凝聚态演变过程中的定量构效关系[J]. 化学学报, 2019, 77(5): 397-405. |
[11] | 杨英, 朱从潭, 林飞宇, 陈甜, 潘德群, 郭学益. 反式钙钛矿太阳能电池研究进展[J]. 化学学报, 2019, 77(10): 964-976. |
[12] | 杨英, 陈甜, 潘德群, 张政, 郭学益. 双面进光太阳能电池透明对电极研究进展[J]. 化学学报, 2018, 76(9): 681-690. |
[13] | 赵聪, 马颖, 汪洋, 周雪, 李会增, 李明珠, 宋延林. 光子晶体太阳能电池研究进展[J]. 化学学报, 2018, 76(1): 9-21. |
[14] | 黄玉章, 雷洛奇, 郑超, 危博, 赵祖金, 秦安军, 胡蓉蓉, 唐本忠. 含四苯基乙烯的炔酮衍生物的设计合成、聚集诱导发光性质及其对Pd2+的选择性荧光检测[J]. 化学学报, 2016, 74(11): 885-892. |
[15] | 刘鑫, 赵龙, 王媛, 牟凌云, 张艺馨, 周静静, 王锐. 一类全新阿片样二肽的设计合成及镇痛活性研究[J]. 化学学报, 2016, 74(1): 44-48. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||