化学学报 ›› 2022, Vol. 80 ›› Issue (2): 180-198.DOI: 10.6023/A21100489 上一篇 下一篇
综述
投稿日期:
2021-10-29
发布日期:
2021-12-20
通讯作者:
孙鸣
作者简介:
何磊, 男, 硕士研究生. 现就读于西北大学化工学院硕士研究生, 目前主要研究方向为新型分子筛的设计与制备. |
么秋香, 女, 博士(后). 西京学院理学院副教授, 高级工程师. 主持在研及完成国家自然科学基金青年项目1项、中国博士后基金站中特别资助项目1项、中国博士后基金面上项目1项、陕西省重点研发计划一般项目(工业领域)1项、陕西省自然科学基础研究计划-青年项目1项. 参与国家重点研发计划项目、陕西省科技统筹创新工程计划项目、陕煤化集团工业化项目、万吨级输送床粉煤快速热解试验装置改造与优化项目等. 发表学术论文30余篇, 申请专利14件. 目前担任国家自然科学基金委、陕西省科技技术厅等机构的项目评审专家. 目前主要研究方向为煤焦油催化转化制化学品的研究. |
孙鸣, 男, 博士. 西北大学化工学院教授, 博士生导师. 主持在研及完成国家重点研发计划项目课题1项、国家自然科学基金面上项目2项, 国家自然科学基金青年项目1项, 陕西省重点研发计划-重点产业创新链(群)-工业领域项目1项, 陕西省创新人才推进计划等. 参与国家863计划、国际科技合作等项目3项, 国家自然基金和陕西省重点研发计划项目5项. 获陕西青年科技奖、陕西省青年科技新星等. 发表学术论文60余篇, 以第一发明人授权专利20余件, 主持制定国家标准1项. 目前主要研究方向: (1)煤炭、生物质资源的转化与利用; (2)焦油梯级分离基础研究与应用开发; (3)焦油催化转化基础研究与应用开发. |
马晓迅, 男, 博士. 西北大学化工学院二级教授, 博士生导师. 现任国家碳氢资源清洁利用国际科技合作基地主任、陕北能源先进化工利用技术教育部工程研究中心主任、陕西省洁净煤转化工程技术研究中心主任、陕北能源化工产业发展协同创新中心主任等. 主持在研及完成国家自然科学基金重点项目、国家863计划、国家国际科技合作、科技支撑计划等项目/课题9项, 发表论文200余篇, 获得授权发明专利40余件. 主要研究方向为煤炭清洁高效转化利用、化工传质与分离、天然气化工、碳一化工、粉-粒流化床/喷动床、大气污染控制(烟气脱硫、脱硝)、化工过程优化和全生命周期分析等领域的科学研究与技术开发. |
基金资助:
Lei Hea, Qiuxiang Yaob, Ming Suna(), Xiaoxun Maa
Received:
2021-10-29
Published:
2021-12-20
Contact:
Ming Sun
Supported by:
文章分享
如今在能源紧缺和“双碳”背景下, 能源清洁高效利用显得异常重要. 沸石催化剂是在能源加工过程中提高产出和品质的重要手段, 现已成为该领域的研究热点. 随着对沸石研究的进一步深入, 它们的性质和结构逐渐清晰, 广泛应用于催化、吸附、分离等行业. 独特晶体结构的二维沸石, 它们的片层结构在降低分子传输路径的同时, 可增大活性位点的可及性, 降低了积碳率, 具有较大应用潜力. 此外, 通过改变结构导向剂的结构可以拓宽二维沸石的种类, 符合工业上适应范围广的特点. 在此, 综述了两种维度分子筛的发展过程, 阐明了它们在不同领域中催化转化的构-效关系, 以及二维沸石的制备路径. 整理了合成机理并分析了二维沸石在比表面积和活性位点可及性上的优势, 为二维沸石分子筛在工业中的应用提供借鉴.
何磊, 么秋香, 孙鸣, 马晓迅. 二维(2D)沸石与三维(3D)沸石的制备及催化研究进展[J]. 化学学报, 2022, 80(2): 180-198.
Lei He, Qiuxiang Yao, Ming Sun, Xiaoxun Ma. Progress in Preparation and Catalysis of Two-dimensional (2D) and Three-dimensional (3D) Zeolites[J]. Acta Chimica Sinica, 2022, 80(2): 180-198.
Finding year | Type of material | Structure code | Framework composition | Framework density/(T-atom/nm3) | Channel dimension | Ref. |
---|---|---|---|---|---|---|
2009 | ITQ-37 | -ITV | Ge, Si | 10.3 | 3D: 30×30×30 ring (R) | [34] |
2010 | ITQ-40 | -IRY | Ge, Si | 11.1 | 3D: 16×15×15 R | [36] |
2010 | ITQ-44 | IRR | Ge, Si | 11.8 | 3D: 18×12×12 R | [37] |
2011 | ITQ-43 | Ge, Si | 11.4 | 3D: 28×12×12 R | [38] | |
2013 | ITQ-51 | IFO | Al, P | 17.3 | 1D: 16 R | [39] |
2014 | NUD-1 | Ge, Si | 11.8 | 3D: 18×12×10 R | [40] | |
2014 | IPC-7 | Ge, Si | — | 3D: 14×12×10 R | [41] | |
2014 | SSZ-61 | *-SSO | Si | 16.7 | 1D: 18 R | [42] |
2014 | EMM-23 | *-EWT | Si | 14.5 | 3D: 24×21×10 R | [43] |
2015 | ITQ-53 | -IFT | Ge, Si | 11.6 | 3D: 14×14×14 R | [44] |
2015 | ITQ-54 | -IFU | Ge, Si | 12.1 | 3D: 20×14×12 R | [45] |
2015 | GeZA | Ge, Si | 12.0 | 3D: 15×14×12 R | [46] | |
2017 | SSZ-70 | *-SVY | Si | 16.3 | 2D: 14×10 R | [47] |
2018 | SYSU-3 | -SYT | Ge, Si | 12.2 | 3D: 24×8×8 R | [48] |
2018 | ECNU-9 | Al, Si | 16.0 | 3D: 18×12×12 R | [49] | |
2020 | NUD-6 | Si | 12.0 | 2D: 14×12 R | [50] | |
2020 | IDM-1 | Si | — | 3D: 16×8×8 R | [51] | |
2021 | HPM-14 | SOF | Ge, Si | 14.1 | 3D: 16×9×8 R | [52] |
2021 | ITQ-56 | IWS | Ge, Si | 12.4 | 3D: 22×12×12 R | [53] |
Finding year | Type of material | Structure code | Framework composition | Framework density/(T-atom/nm3) | Channel dimension | Ref. |
---|---|---|---|---|---|---|
2009 | ITQ-37 | -ITV | Ge, Si | 10.3 | 3D: 30×30×30 ring (R) | [34] |
2010 | ITQ-40 | -IRY | Ge, Si | 11.1 | 3D: 16×15×15 R | [36] |
2010 | ITQ-44 | IRR | Ge, Si | 11.8 | 3D: 18×12×12 R | [37] |
2011 | ITQ-43 | Ge, Si | 11.4 | 3D: 28×12×12 R | [38] | |
2013 | ITQ-51 | IFO | Al, P | 17.3 | 1D: 16 R | [39] |
2014 | NUD-1 | Ge, Si | 11.8 | 3D: 18×12×10 R | [40] | |
2014 | IPC-7 | Ge, Si | — | 3D: 14×12×10 R | [41] | |
2014 | SSZ-61 | *-SSO | Si | 16.7 | 1D: 18 R | [42] |
2014 | EMM-23 | *-EWT | Si | 14.5 | 3D: 24×21×10 R | [43] |
2015 | ITQ-53 | -IFT | Ge, Si | 11.6 | 3D: 14×14×14 R | [44] |
2015 | ITQ-54 | -IFU | Ge, Si | 12.1 | 3D: 20×14×12 R | [45] |
2015 | GeZA | Ge, Si | 12.0 | 3D: 15×14×12 R | [46] | |
2017 | SSZ-70 | *-SVY | Si | 16.3 | 2D: 14×10 R | [47] |
2018 | SYSU-3 | -SYT | Ge, Si | 12.2 | 3D: 24×8×8 R | [48] |
2018 | ECNU-9 | Al, Si | 16.0 | 3D: 18×12×12 R | [49] | |
2020 | NUD-6 | Si | 12.0 | 2D: 14×12 R | [50] | |
2020 | IDM-1 | Si | — | 3D: 16×8×8 R | [51] | |
2021 | HPM-14 | SOF | Ge, Si | 14.1 | 3D: 16×9×8 R | [52] |
2021 | ITQ-56 | IWS | Ge, Si | 12.4 | 3D: 22×12×12 R | [53] |
Entry | Catalyst | Zeolite character | Mass ratio of M/Z w/% | C1 convertion /% | Product selectivity/% | Condition (T/℃-p/MPa) (H2:COx) c | Ref. | |||
---|---|---|---|---|---|---|---|---|---|---|
Topology (MR-Window size) | B acid a/ (mmol•g-1) | Olefins b | Aromatics | |||||||
1 | ZnCrOx/mordenite | MOR (12MR-0.70×0.65 nm; 8MR-0.57×0.26 nm、 0.48×0.34 nm) | 0.98 | ZnCrOx (50) | CO | 26 | 73 C2= | — | 360-2.5 H2:CO=2.5 | [94] |
2 | ZnAlO-SAPO-X (X:35/17/34/18/11/31/5/37) | LEV (8MR-0.48×0.36 nm) | 0.44 | ZnAlO (33.3) | 15 | 55.7 | — | 400-3 H2:CO=2 | [98] | |
ERI (8MR-0.51×0.36 nm) | 0.19 | ZnAlO (33.3) | 31 | 54 | — | 400-3 H2:CO=2 | ||||
CHA (8MR-0.38×0.38 nm) | 0.21 | ZnAlO (33.3) | 25 | 53 | — | 400-3 H2:CO=2 | ||||
AEI (8MR-0.38×0.38 nm) | 0.12 | ZnAlO (33.3) | 23 | 69 | — | 400-3 H2:CO=2 | ||||
AEL (10MR-0.65×0.40 nm) | 0.23 | ZnAlO (33.3) | 7 | 18.4 | — | 350-3 H2:CO=2 | ||||
ATO (12MR-0.54×0.54 nm) | 0.13 | ZnAlO (33.3) | 1 | 28.7 | — | 350-3 H2:CO=2 | ||||
AFI (12MR-0.73×0.73 nm) | 0.30 | ZnAlO (33.3) | 6 | 10.9 | — | 400-3 H2:CO=2 | ||||
FAU (12MR-0.74×0.74 nm) | 0.40 | ZnAlO (33.3) | 9 | 18.6 | — | 400-3 H2:CO=2 | ||||
3 | ZnCrOx/SAPO-17 | ERI (8MR-0.51×0.38 nm) | 0.28 | ZnCrOx (50) | 38 | 76.4 | — | 400-4 H2:CO=1 | [99] | |
4 | ZnCrOx-ZSM-5 | MFI (10MR-0.53×0.56 nm; 0.51×0.55 nm) | 0.13 | ZnCrOx (50) | 16 | — | 73.9 | 350-4 H2:CO=1 | [101] | |
5 | Cr2O3/ZSM-5 | MFI (10MR-0.53×0.56 nm; 0.51×0.55 nm) | 0.20 Strong acidity | SiO2 (20) | 49 | — | 2.99 mmol/(g•h) | 395-7 H2:CO=1 | [104] | |
6 | ZnO-Y2O3/SAPO-34 | CHA (8MR-0.38×0.38 nm) | — | ZnO-Y2O3 (6.7) | CO2 | 28 | 83.9 | — | 390-4 H2:CO2=4 | [108] |
7 | In-Zr/SAPO-34 | CHA (8MR-0.38×0.38 nm) | — | In-Zr (66.7) | 29 | 83.9 | — | 400-3 H2:CO2=3 | [109] | |
8 | ZnAlOx&H-ZSM-5 | MFI (10MR-0.53×0.56 nm; 0.51×0.55 nm) | 0.11 total | ZnAlOx (50) | 9 | — | 73.9 | 320-3 H2:CO2=3 | [111] | |
9 | Fe-K/α-Al2O3&P/ ZSM-5 | MFI (10MR-0.53×0.56 nm; 0.51×0.55 nm) | 0.27 strong acidity | Fe-K (15-10) P (8) | 36 | — | 35.5 (within CO) | 400-3 H2:CO2=1 | [112] | |
10 | ZnCrOx-ZnZSM-5 | MFI (10MR-0.53×0.56 nm; 0.51×0.55 nm) | — | ZnCrOx (50) | 20 | — | 81.8 | 320-5 H2:CO2=3 | [113] |
Entry | Catalyst | Zeolite character | Mass ratio of M/Z w/% | C1 convertion /% | Product selectivity/% | Condition (T/℃-p/MPa) (H2:COx) c | Ref. | |||
---|---|---|---|---|---|---|---|---|---|---|
Topology (MR-Window size) | B acid a/ (mmol•g-1) | Olefins b | Aromatics | |||||||
1 | ZnCrOx/mordenite | MOR (12MR-0.70×0.65 nm; 8MR-0.57×0.26 nm、 0.48×0.34 nm) | 0.98 | ZnCrOx (50) | CO | 26 | 73 C2= | — | 360-2.5 H2:CO=2.5 | [94] |
2 | ZnAlO-SAPO-X (X:35/17/34/18/11/31/5/37) | LEV (8MR-0.48×0.36 nm) | 0.44 | ZnAlO (33.3) | 15 | 55.7 | — | 400-3 H2:CO=2 | [98] | |
ERI (8MR-0.51×0.36 nm) | 0.19 | ZnAlO (33.3) | 31 | 54 | — | 400-3 H2:CO=2 | ||||
CHA (8MR-0.38×0.38 nm) | 0.21 | ZnAlO (33.3) | 25 | 53 | — | 400-3 H2:CO=2 | ||||
AEI (8MR-0.38×0.38 nm) | 0.12 | ZnAlO (33.3) | 23 | 69 | — | 400-3 H2:CO=2 | ||||
AEL (10MR-0.65×0.40 nm) | 0.23 | ZnAlO (33.3) | 7 | 18.4 | — | 350-3 H2:CO=2 | ||||
ATO (12MR-0.54×0.54 nm) | 0.13 | ZnAlO (33.3) | 1 | 28.7 | — | 350-3 H2:CO=2 | ||||
AFI (12MR-0.73×0.73 nm) | 0.30 | ZnAlO (33.3) | 6 | 10.9 | — | 400-3 H2:CO=2 | ||||
FAU (12MR-0.74×0.74 nm) | 0.40 | ZnAlO (33.3) | 9 | 18.6 | — | 400-3 H2:CO=2 | ||||
3 | ZnCrOx/SAPO-17 | ERI (8MR-0.51×0.38 nm) | 0.28 | ZnCrOx (50) | 38 | 76.4 | — | 400-4 H2:CO=1 | [99] | |
4 | ZnCrOx-ZSM-5 | MFI (10MR-0.53×0.56 nm; 0.51×0.55 nm) | 0.13 | ZnCrOx (50) | 16 | — | 73.9 | 350-4 H2:CO=1 | [101] | |
5 | Cr2O3/ZSM-5 | MFI (10MR-0.53×0.56 nm; 0.51×0.55 nm) | 0.20 Strong acidity | SiO2 (20) | 49 | — | 2.99 mmol/(g•h) | 395-7 H2:CO=1 | [104] | |
6 | ZnO-Y2O3/SAPO-34 | CHA (8MR-0.38×0.38 nm) | — | ZnO-Y2O3 (6.7) | CO2 | 28 | 83.9 | — | 390-4 H2:CO2=4 | [108] |
7 | In-Zr/SAPO-34 | CHA (8MR-0.38×0.38 nm) | — | In-Zr (66.7) | 29 | 83.9 | — | 400-3 H2:CO2=3 | [109] | |
8 | ZnAlOx&H-ZSM-5 | MFI (10MR-0.53×0.56 nm; 0.51×0.55 nm) | 0.11 total | ZnAlOx (50) | 9 | — | 73.9 | 320-3 H2:CO2=3 | [111] | |
9 | Fe-K/α-Al2O3&P/ ZSM-5 | MFI (10MR-0.53×0.56 nm; 0.51×0.55 nm) | 0.27 strong acidity | Fe-K (15-10) P (8) | 36 | — | 35.5 (within CO) | 400-3 H2:CO2=1 | [112] | |
10 | ZnCrOx-ZnZSM-5 | MFI (10MR-0.53×0.56 nm; 0.51×0.55 nm) | — | ZnCrOx (50) | 20 | — | 81.8 | 320-5 H2:CO2=3 | [113] |
Typical material | Structure code | Framework composition (Si/Ta) | SDA | Swelling or pillared reagent b | Crystallization conditions | Layer Spacing /nm | Order | Ref. | |||
---|---|---|---|---|---|---|---|---|---|---|---|
℃ | pH c | d | |||||||||
MCM-22P | MWW | Si, B, Al (92.4/7.1/0.5) | Hexamethyleneimine (HMI) | — | 120 | OH-: 4.3 | 230 | 2.7 | OR-BL | [115] | |
Ti-YNU-1 | MWW | Si, Ti (240) | Piperidine (PI) | — | 170 | — | 5 | 2.7 | OF-BL | [117] | |
PREFER | FER | Si | 4-amino-2,2,6,6-tetra-methylpiperidine | Me2Si(OEt)2 | 170 | H+: 1.0 | 7 | 1.2 | OR-BL | [118] | |
PLS-1 | CDO | Si, K (1/36) | Tetramethylammonium hydroxide (TMAOH) | 150 | — | 10 | 1.1 | ||||
MCM-47 | MWW | Si | Bis(N-methylpyrrolidi-nium) dibromide | 170 | OH-: 0.3 | 6 | 1.2 | ||||
MCM-36 | MWW | Si, B, Al (92.4/7.1/0.5) | HMI | C16TMA-OH, Tetraethylorthosilicate | ≈100 | — | 4 | 2.5 | OF-BL | [119] | |
MCM-22-BETE | MWW | Si, Al (50) | HMI, 1,4-bis(triethoxysilyl)- benzene (BTEB) | Cetyltrimethylammonium hydroxide solution (CTMA) | 135 | 12.5 | 11 | 4.1 | OF-BL | [120] | |
ITQ-2 | MWW | Si, Al | HMI | Hexadecyltrimethylammonium bromide (CTAB), Tetrapropylammonium hydroxide (TPAOH) | 135 | >9 | 11 | ≈4.5 | D-BL | [121] | |
EMM-10 | MWW | Si, Al (14.7) | Bis (N,N,N-trimethyl)-1,5-pentanediaminium dibromide | — | 170 | OH-: 14.4 | 3.3 | >2.6 | OF-BL | [126] | |
PREFER | FER | Si, Al (1/0, 1/0.2) | 4-amino-2,2,6,6-tetra-methylpiperidine | — | 170 | 9 | 15 | 0.7 | OR-BL | [124] | |
MCM-56 | MWW | Si, Al (15) | HMI, Sodium (Na) | — | — | OH-: 0.18 | — | 2.5 | D-BL | [127] | |
Selfpillared pentasil (SPP) | MFI/ MEL | Si, Al (pure, 200, 100) | — | Tetrabutylphosphonium (TBP)-silica, Tetrabutylammonium (TBA)-silica sols | 113 | OH-: 0, 100, 80 | 1.7, 1.3, 2 | — | V-BL | [129] | |
Mul-ZSM-5 | MFI | Si, Al (50) | [C22H45N+(CH3)2C6H12N+(CH3)2C6H13] Br2 (C22-6-6) | — | 150 | OH-: 0.24 | 5 | <2.8 | OR-BL | [20] | |
Uni-ZSM-5 | C22-6-6, no Na | 150 | OH-: 0.24 | 11 | — | D-BL | |||||
Mul-ZSM-5 | MFI | Si | C22-6-6 | — | 140 | OH-: 0.24 | <10 | 4.5 | OR-BL | [125] | |
Uni-ZSM-5 | [C22H45N+(CH3)2C8H16N+(CH3)2C6H13] Br2 (C22-8-6) | — | D-BL | ||||||||
MIT-1 | MWW | Si, Al (20) | C10H15-N+(CH3)2-C4H8-N+(CH3)2-C16H33 (Ada-i-16, i: 4, 5, 6) | — | 160 | OH-: 0.4 | 14~22 | — | D-BL | [130] | |
UJM1-P | MWW | Si, Al (20) | (Ada-4-16) | — | 160 | OH-: 0.2 | 7~14 | — | OR-BL | [131] | |
Mul-ZSM-5 | MFI | Si, Al (50) | C22-6-6 | TPAOH | 150 | OH-: 0.24 | 5 | — | OR-BL | [132] | |
Ml-MWW | MWW | Si, Al (1/0.066) | HMI, [(CH3O)3SiC3H6N- (CH3)2C18H37] Cl (TPOAC) | — | 150 | OH-: 0.3 | >6 | — | OR-BL | [26] | |
SL-MWW | HMI, TPOAC | 150 | OH-: 0.2 | 14 | — | D-BL | |||||
DS-ITQ-2 | MWW | Si, Al (1/0.066) | HMI, N-hexadecyl-N'-methyl-DABCO(C16DC1) | — | 150 | OH-: 0.3 | 7 | — | D-BL | [134] | |
LTS-1 | MFI | Si, Ti (50) | [C6H13-N+(CH3)2-C6H12-N+(CH3)2-(CH2)12-O-(p-C6H4)2-O-(CH2)12-N+- (CH3)2-C6H12-N+(CH3)2-C6H13] [Br-]4 (BCph-12-6-6), TPAOH | — | 150 | — | 7 | — | OR-BL | [135] | |
NSHM | MFI | Si | C3N3{[p-C6H4-CH2-N+(CH3)2-C6H12-N+- (CH3)2C6H13] [Br-]2}3 | — | 150 | 12 | 5 | — | V-BL | [136] | |
IPC-1 | UTL | Si (0.69~0.76), B (0.04~0.11), Ge (0.4) | HCl (0.1 mol/L) | — | 175 | OH-: 0.38 | 9~15 | 1.1 | OR-BL | [137] | |
IPC-1SW | TPMA-Cl, TPAOH | 3.9 | |||||||||
IPC-2 | OKO | HNO3 (1 mol/L) | Si(CH3)3- (OCH2CH3)2 | 0.9 | |||||||
IPC-2 | OKO | Si (0.30~1.03) Ge (0.17~0.84) | (6R,10S)-6,10-dimethyl-5-azoniaspiro [4,5] decane hydroxide, HNO3 (1 mol/L) | Diethoxydimethylsilane | 175 | — | 2~23 | — | OR-BL | [142] | |
IPC-4 | PCR | Octylamine | — |
Typical material | Structure code | Framework composition (Si/Ta) | SDA | Swelling or pillared reagent b | Crystallization conditions | Layer Spacing /nm | Order | Ref. | |||
---|---|---|---|---|---|---|---|---|---|---|---|
℃ | pH c | d | |||||||||
MCM-22P | MWW | Si, B, Al (92.4/7.1/0.5) | Hexamethyleneimine (HMI) | — | 120 | OH-: 4.3 | 230 | 2.7 | OR-BL | [115] | |
Ti-YNU-1 | MWW | Si, Ti (240) | Piperidine (PI) | — | 170 | — | 5 | 2.7 | OF-BL | [117] | |
PREFER | FER | Si | 4-amino-2,2,6,6-tetra-methylpiperidine | Me2Si(OEt)2 | 170 | H+: 1.0 | 7 | 1.2 | OR-BL | [118] | |
PLS-1 | CDO | Si, K (1/36) | Tetramethylammonium hydroxide (TMAOH) | 150 | — | 10 | 1.1 | ||||
MCM-47 | MWW | Si | Bis(N-methylpyrrolidi-nium) dibromide | 170 | OH-: 0.3 | 6 | 1.2 | ||||
MCM-36 | MWW | Si, B, Al (92.4/7.1/0.5) | HMI | C16TMA-OH, Tetraethylorthosilicate | ≈100 | — | 4 | 2.5 | OF-BL | [119] | |
MCM-22-BETE | MWW | Si, Al (50) | HMI, 1,4-bis(triethoxysilyl)- benzene (BTEB) | Cetyltrimethylammonium hydroxide solution (CTMA) | 135 | 12.5 | 11 | 4.1 | OF-BL | [120] | |
ITQ-2 | MWW | Si, Al | HMI | Hexadecyltrimethylammonium bromide (CTAB), Tetrapropylammonium hydroxide (TPAOH) | 135 | >9 | 11 | ≈4.5 | D-BL | [121] | |
EMM-10 | MWW | Si, Al (14.7) | Bis (N,N,N-trimethyl)-1,5-pentanediaminium dibromide | — | 170 | OH-: 14.4 | 3.3 | >2.6 | OF-BL | [126] | |
PREFER | FER | Si, Al (1/0, 1/0.2) | 4-amino-2,2,6,6-tetra-methylpiperidine | — | 170 | 9 | 15 | 0.7 | OR-BL | [124] | |
MCM-56 | MWW | Si, Al (15) | HMI, Sodium (Na) | — | — | OH-: 0.18 | — | 2.5 | D-BL | [127] | |
Selfpillared pentasil (SPP) | MFI/ MEL | Si, Al (pure, 200, 100) | — | Tetrabutylphosphonium (TBP)-silica, Tetrabutylammonium (TBA)-silica sols | 113 | OH-: 0, 100, 80 | 1.7, 1.3, 2 | — | V-BL | [129] | |
Mul-ZSM-5 | MFI | Si, Al (50) | [C22H45N+(CH3)2C6H12N+(CH3)2C6H13] Br2 (C22-6-6) | — | 150 | OH-: 0.24 | 5 | <2.8 | OR-BL | [20] | |
Uni-ZSM-5 | C22-6-6, no Na | 150 | OH-: 0.24 | 11 | — | D-BL | |||||
Mul-ZSM-5 | MFI | Si | C22-6-6 | — | 140 | OH-: 0.24 | <10 | 4.5 | OR-BL | [125] | |
Uni-ZSM-5 | [C22H45N+(CH3)2C8H16N+(CH3)2C6H13] Br2 (C22-8-6) | — | D-BL | ||||||||
MIT-1 | MWW | Si, Al (20) | C10H15-N+(CH3)2-C4H8-N+(CH3)2-C16H33 (Ada-i-16, i: 4, 5, 6) | — | 160 | OH-: 0.4 | 14~22 | — | D-BL | [130] | |
UJM1-P | MWW | Si, Al (20) | (Ada-4-16) | — | 160 | OH-: 0.2 | 7~14 | — | OR-BL | [131] | |
Mul-ZSM-5 | MFI | Si, Al (50) | C22-6-6 | TPAOH | 150 | OH-: 0.24 | 5 | — | OR-BL | [132] | |
Ml-MWW | MWW | Si, Al (1/0.066) | HMI, [(CH3O)3SiC3H6N- (CH3)2C18H37] Cl (TPOAC) | — | 150 | OH-: 0.3 | >6 | — | OR-BL | [26] | |
SL-MWW | HMI, TPOAC | 150 | OH-: 0.2 | 14 | — | D-BL | |||||
DS-ITQ-2 | MWW | Si, Al (1/0.066) | HMI, N-hexadecyl-N'-methyl-DABCO(C16DC1) | — | 150 | OH-: 0.3 | 7 | — | D-BL | [134] | |
LTS-1 | MFI | Si, Ti (50) | [C6H13-N+(CH3)2-C6H12-N+(CH3)2-(CH2)12-O-(p-C6H4)2-O-(CH2)12-N+- (CH3)2-C6H12-N+(CH3)2-C6H13] [Br-]4 (BCph-12-6-6), TPAOH | — | 150 | — | 7 | — | OR-BL | [135] | |
NSHM | MFI | Si | C3N3{[p-C6H4-CH2-N+(CH3)2-C6H12-N+- (CH3)2C6H13] [Br-]2}3 | — | 150 | 12 | 5 | — | V-BL | [136] | |
IPC-1 | UTL | Si (0.69~0.76), B (0.04~0.11), Ge (0.4) | HCl (0.1 mol/L) | — | 175 | OH-: 0.38 | 9~15 | 1.1 | OR-BL | [137] | |
IPC-1SW | TPMA-Cl, TPAOH | 3.9 | |||||||||
IPC-2 | OKO | HNO3 (1 mol/L) | Si(CH3)3- (OCH2CH3)2 | 0.9 | |||||||
IPC-2 | OKO | Si (0.30~1.03) Ge (0.17~0.84) | (6R,10S)-6,10-dimethyl-5-azoniaspiro [4,5] decane hydroxide, HNO3 (1 mol/L) | Diethoxydimethylsilane | 175 | — | 2~23 | — | OR-BL | [142] | |
IPC-4 | PCR | Octylamine | — |
Typical material | Si/Al a | SBET/ (m2•g-1) | Sext/ (m2•g-1) | Vtot/ (cm3•g-1) | Vmic/ (cm3•g-1) | Total acidic sites/(mmol NH3•g-1) | Brönsted sites/ (mmol•g-1) | Conversion/% | Ref. |
---|---|---|---|---|---|---|---|---|---|
HMCM-22 | 31.5 | 402 | 105 | 0.49 | 0.16 | — | 1.85×1022 b | Methanol, 57 | [162] |
HMCM-56 | 20 | 254 | 144 | 1.20 | 0.06 | — | 6.79×1021 b | Methanol, 59 | |
SL-MWW | 58 | 640 | 446 | 1.21 | 0.09 | 0.65 | 0.464 c | 1-Dodecane, 63 | [26] |
HMCM-22 | 35 | 226 | 100 | 0.20 | 0.12 | 0.53 | — | paddy husk, 61~73 (DOD) | [161] |
ITQ-2 | 35 | 546 | 442 | 0.17 | 0.10 | 0.77 | paddy husk, 66~81 (DOD) | ||
L-ZSM-5 | 33 | 490 | 242 | 0.70 | 0.14 | 0.31 | — | LDPE, 56 | [168] |
Pi-ZSM-5 | 64 | 698 | 498 | 0.61 | 0.12 | 0.17 | LDPE, 55 | ||
Rh0.8Ru0.2/SP-ZSM-5 | 100 | 507 | 310 | — | 0.09 | 0.11 | 0.07 d | Nitrobenzene, 100 | [163] |
NS-25 | 22 | 438 | — | 0.41 | 0.11 | 1.05 | 0.88 d | JP-10, 45 | [171] |
NS-50 | 49 | 405 | 0.39 | 0.12 | 0.62 | 0.25 d | JP-10, 25 | ||
HMCM-22 | 25 | — | 121 | 0.29 | 0.14 | 0.46 | 0.06 e | Benzene with benzyl alcohol, 40 | [130] |
HMCM-56 | 12 | 219 | 0.60 | 0.13 | 0.32 | 0.13 e | Benzene with benzyl alcohol, 44 | ||
MIT-1 | 16 | 513 | 1.01 | 0.13 | 0.33 | 0.21 e | Benzene with benzyl alcohol, 98 | ||
MIT-1 | 45 | 500 | 240 | 0.11 | 0.09 | 0.36 | 0.31 | Benzyl alcohol, >50 | [131] |
UJM-1 | 16 | 500 | 135 | 0.12 | 0.11 | 0.99 | 0.09 | Benzyl alcohol, >95 | |
HMCM-56 | 14 | 474 | 140 | 0.12 | 0.12 | 1.14 | 1.03 | Benzyl alcohol, >90 | |
HMCM-22 | 24 | 375 | 76 | 0.12 | 0.11 | 0.67 | 0.60 | Benzyl alcohol, >60 | |
UJM-1P | 45 | 1063 | 154 | 0.41 | 0.32 | 0.36 | 0.31 | — | |
MCM-22 | 62 | 396 | 89 | 0.34 | 0.14 | 1.12 | 0.05 c | Benzyl alcohol, >40 | [175] |
CT-MCM-36 | 46 | 850 | 300 | 0.78 | 0.24 | 0.57 | 0.12 c | Benzyl alcohol, >90 | |
DP-MCM-36 | 42 | 718 | 299 | 0.65 | 0.17 | 0.59 | 0.10 c | Benzyl alcohol, >90 | |
Ge-MCM-36 | 70 | 767 | 265 | 0.70 | 0.20 | 0.62 | 0.09 c | Benzyl alcohol, >99 | |
MFI-0 | 50 | 448 | 253 | 0.37 | 0.09 | — | 2.4×107 f | Benzyl alcohol, <0.2 (determination of rate constants) | [23] |
MFI-1 | 51 | 462 | 262 | 0.41 | 0.09 | 2.4×107 f | Benzyl alcohol, >0.3 | ||
MFI-2 | 48 | 427 | 227 | 0.41 | 0.09 | 2.5×107 f | Benzyl alcohol, >0.3 | ||
MFI-3 | 47 | 517 | 376 | 0.50 | 0.07 | 2.8×107 f | Benzyl alcohol, >0.7 | ||
MFI-5 | 49 | 494 | 334 | 0.46 | 0.09 | 3.2×107 f | Benzyl alcohol, >0.9 | ||
MFI-8 | 51 | 468 | 294 | 0.45 | 0.08 | 2.4×107 f | Benzyl alcohol, >0.8 | ||
MFI-12 | 54 | 495 | 289 | 0.33 | 0.09 | 2.5×107 f | Benzyl alcohol, >0.4 | ||
MFI-20 | 50 | 492 | 229 | 0.30 | 0.11 | 3.2×107 f | Benzyl alcohol, >0.2 |
Typical material | Si/Al a | SBET/ (m2•g-1) | Sext/ (m2•g-1) | Vtot/ (cm3•g-1) | Vmic/ (cm3•g-1) | Total acidic sites/(mmol NH3•g-1) | Brönsted sites/ (mmol•g-1) | Conversion/% | Ref. |
---|---|---|---|---|---|---|---|---|---|
HMCM-22 | 31.5 | 402 | 105 | 0.49 | 0.16 | — | 1.85×1022 b | Methanol, 57 | [162] |
HMCM-56 | 20 | 254 | 144 | 1.20 | 0.06 | — | 6.79×1021 b | Methanol, 59 | |
SL-MWW | 58 | 640 | 446 | 1.21 | 0.09 | 0.65 | 0.464 c | 1-Dodecane, 63 | [26] |
HMCM-22 | 35 | 226 | 100 | 0.20 | 0.12 | 0.53 | — | paddy husk, 61~73 (DOD) | [161] |
ITQ-2 | 35 | 546 | 442 | 0.17 | 0.10 | 0.77 | paddy husk, 66~81 (DOD) | ||
L-ZSM-5 | 33 | 490 | 242 | 0.70 | 0.14 | 0.31 | — | LDPE, 56 | [168] |
Pi-ZSM-5 | 64 | 698 | 498 | 0.61 | 0.12 | 0.17 | LDPE, 55 | ||
Rh0.8Ru0.2/SP-ZSM-5 | 100 | 507 | 310 | — | 0.09 | 0.11 | 0.07 d | Nitrobenzene, 100 | [163] |
NS-25 | 22 | 438 | — | 0.41 | 0.11 | 1.05 | 0.88 d | JP-10, 45 | [171] |
NS-50 | 49 | 405 | 0.39 | 0.12 | 0.62 | 0.25 d | JP-10, 25 | ||
HMCM-22 | 25 | — | 121 | 0.29 | 0.14 | 0.46 | 0.06 e | Benzene with benzyl alcohol, 40 | [130] |
HMCM-56 | 12 | 219 | 0.60 | 0.13 | 0.32 | 0.13 e | Benzene with benzyl alcohol, 44 | ||
MIT-1 | 16 | 513 | 1.01 | 0.13 | 0.33 | 0.21 e | Benzene with benzyl alcohol, 98 | ||
MIT-1 | 45 | 500 | 240 | 0.11 | 0.09 | 0.36 | 0.31 | Benzyl alcohol, >50 | [131] |
UJM-1 | 16 | 500 | 135 | 0.12 | 0.11 | 0.99 | 0.09 | Benzyl alcohol, >95 | |
HMCM-56 | 14 | 474 | 140 | 0.12 | 0.12 | 1.14 | 1.03 | Benzyl alcohol, >90 | |
HMCM-22 | 24 | 375 | 76 | 0.12 | 0.11 | 0.67 | 0.60 | Benzyl alcohol, >60 | |
UJM-1P | 45 | 1063 | 154 | 0.41 | 0.32 | 0.36 | 0.31 | — | |
MCM-22 | 62 | 396 | 89 | 0.34 | 0.14 | 1.12 | 0.05 c | Benzyl alcohol, >40 | [175] |
CT-MCM-36 | 46 | 850 | 300 | 0.78 | 0.24 | 0.57 | 0.12 c | Benzyl alcohol, >90 | |
DP-MCM-36 | 42 | 718 | 299 | 0.65 | 0.17 | 0.59 | 0.10 c | Benzyl alcohol, >90 | |
Ge-MCM-36 | 70 | 767 | 265 | 0.70 | 0.20 | 0.62 | 0.09 c | Benzyl alcohol, >99 | |
MFI-0 | 50 | 448 | 253 | 0.37 | 0.09 | — | 2.4×107 f | Benzyl alcohol, <0.2 (determination of rate constants) | [23] |
MFI-1 | 51 | 462 | 262 | 0.41 | 0.09 | 2.4×107 f | Benzyl alcohol, >0.3 | ||
MFI-2 | 48 | 427 | 227 | 0.41 | 0.09 | 2.5×107 f | Benzyl alcohol, >0.3 | ||
MFI-3 | 47 | 517 | 376 | 0.50 | 0.07 | 2.8×107 f | Benzyl alcohol, >0.7 | ||
MFI-5 | 49 | 494 | 334 | 0.46 | 0.09 | 3.2×107 f | Benzyl alcohol, >0.9 | ||
MFI-8 | 51 | 468 | 294 | 0.45 | 0.08 | 2.4×107 f | Benzyl alcohol, >0.8 | ||
MFI-12 | 54 | 495 | 289 | 0.33 | 0.09 | 2.5×107 f | Benzyl alcohol, >0.4 | ||
MFI-20 | 50 | 492 | 229 | 0.30 | 0.11 | 3.2×107 f | Benzyl alcohol, >0.2 |
Technology | Capacity/ (104 t/a) | Enterprises | Catalyst | Developers | Year |
---|---|---|---|---|---|
SGEB工艺 | 30 | 中海石油宁波大榭石化公司 | Nanosheet MFI | 中国石油化工股份有限公司上海石油化工研究院、中国石油化工股份有限公司石油化工科学研究院等 | 2016 |
液相法制乙苯 | 32 | 新疆独山子石化公司 | EBC-1 (Layered MWW) | 中国石油化工股份有限公司上海石油化工研究院 | 2006 |
液相法制乙苯 | 84 | 台塑集团台化公司 | EBC-1 | 中国石油化工股份有限公司上海石油化工研究院 | 2017 |
液相法制乙苯 | 50 | 天津大沽化工有限公司 | EBC-1 | 中国石油化工股份有限公司上海石油化工研究院 | 2018 |
S-ACT工艺 | 30 | 中国-沙特天津石化 | Layered MWW | 中国石油化工股份有限公司上海石油化工研究院 | 2010 |
S-MTO | 60 | 中原石化公司 | Nanosheet SAPO-34 | 中国石化集团谢在库院士团队 | 2011 |
360 | 中天合创公司 | Nanosheet SAPO-34 | 2016 |
Technology | Capacity/ (104 t/a) | Enterprises | Catalyst | Developers | Year |
---|---|---|---|---|---|
SGEB工艺 | 30 | 中海石油宁波大榭石化公司 | Nanosheet MFI | 中国石油化工股份有限公司上海石油化工研究院、中国石油化工股份有限公司石油化工科学研究院等 | 2016 |
液相法制乙苯 | 32 | 新疆独山子石化公司 | EBC-1 (Layered MWW) | 中国石油化工股份有限公司上海石油化工研究院 | 2006 |
液相法制乙苯 | 84 | 台塑集团台化公司 | EBC-1 | 中国石油化工股份有限公司上海石油化工研究院 | 2017 |
液相法制乙苯 | 50 | 天津大沽化工有限公司 | EBC-1 | 中国石油化工股份有限公司上海石油化工研究院 | 2018 |
S-ACT工艺 | 30 | 中国-沙特天津石化 | Layered MWW | 中国石油化工股份有限公司上海石油化工研究院 | 2010 |
S-MTO | 60 | 中原石化公司 | Nanosheet SAPO-34 | 中国石化集团谢在库院士团队 | 2011 |
360 | 中天合创公司 | Nanosheet SAPO-34 | 2016 |
[1] |
BP. Statistical Review of World Energy 2021 (70th edition), BP p.l.c., London, 2021, https://www.bp.com/statisticalreview.
|
[2] |
Ma, X. X.; Zhao, Y. K.; Sun, M.; Yao, Q. X. Coal Convers. 2020, 43, 1. (in Chinese)
|
( 马晓迅, 赵阳坤, 孙鸣, 么秋香, 煤炭转化, 2020, 43, 1.)
|
|
[3] |
Zhang, Q.; Yu, J. H.; Croma, A. Adv. Mater. 2020, 32, 2002927.
doi: 10.1002/adma.v32.44 |
[4] |
Zhang, M. T.; Yan, T. T.; Dai, W. L.; Guan, N. J.; Li, L. D. Acta Chim. Sinica 2020, 78, 1404. (in Chinese)
doi: 10.6023/A20080346 |
( 张梦婷, 颜婷婷, 戴卫理, 关乃佳, 李兰冬, 化学学报, 2020, 78, 1404.)
|
|
[5] |
Sumelius, G.In Synthesis of Microporous Materials, Vol. 1, Eds.: Occelli, M. L.; Robson, H. E., Pergamon, New York, 1992, p. 1.
|
[6] |
Colella, C.; Gualtieri, A. F. Micropor. Mesopor. Mater. 2007, 105, 213.
doi: 10.1016/j.micromeso.2007.04.056 |
[7] |
Schlenker, L.; Kühl, G. H.In Proceedings 9th International Zeolite Conference, Eds.: Ballmoos, R. V.; Higgins, J. B.; Treacy, M. M. J., Pergamon, Boston, 1993, p. 3
|
[8] |
Rojo, T.; Luis, M. J.; Lago, J.; Bazan, B.; Pizarro, J. L.; Arriortua, M. I. J. Mater. Chem. 2009, 19, 3793.
|
[9] |
Baerlocher, C.; McCusker, L. B. Database of Zeolite Structures, 2021, http://www.iza-structure.org/databases/.
|
[10] |
Zones, S. I. Micropor. Mesopor. Mater. 2011, 144, 1.
doi: 10.1016/j.micromeso.2011.03.039 |
[11] |
Roth, W. J.; Nachtigall, P.; Morris, R. E.; Čejka, J. Chem. Rev. 2014, 114, 4807.
doi: 10.1021/cr400600f |
[12] |
Přech, J.; Pizarro, P.; Serrano, D. P.; Čejka, J. Chem. Soc. Rev. 2018, 47, 8263.
doi: 10.1039/C8CS00370J |
[13] |
Baerlocher, C.; McCusker, L. B.; Meier, W. M.; Olson, D. H. Atlas of zeolite framework types, Elsevier Science & Technology, Oxford, 2007, p. 405.
|
[14] |
Mahyuddin, M. H.; Shiota, Y.; Yoshizawa, K. Catal. Sci. Technol. 2019, 9, 1744.
doi: 10.1039/C8CY02414F |
[15] |
McCusker, L. B.; Baerlocher, C.In Studies in Surface Science and Catalysis, Vol. 157, Eds.: Ĉejka, J.; Bekkum, H. V., Elsevier Science & Technology, Oxford, 2005, pp. 41-64.
|
[16] |
Bellussi, G.; Carati, A.; Rizzo, C.; Millini, R. Catal. Sci. Technol. 2013, 3, 833.
doi: 10.1039/C2CY20510F |
[17] |
Huo, Q. S.; Margolese, D. I.; Stucky, G. D. Chem. Mater. 1996, 8, 1147.
doi: 10.1021/cm960137h |
[18] |
Xiao, F. A.; Wang, L. F.; Yin, C. Y.; Lin, K. F.; Di, Y.; Li, J. X.; Xu, R. R.; Su, D. S.; Robert, S.; Toshiyuki, Y.; Takashi, T. Angew. Chem. Int. Ed. 2006, 45, 3090.
doi: 10.1002/(ISSN)1521-3773 |
[19] |
Jin, J. S.; Peng, C. Y.; Wang, J. J.; Liu, H. T.; Gao, X. H.; Liu, H. H.; Xu, C. Y. Ind. Eng. Chem. Res. 2014, 53, 3406.
doi: 10.1021/ie403486x |
[20] |
Choi, M.; Na, K.; Kim, J.; Sakamoto, Y.; Terasaki, O.; Ryoo, R. Nature 2009, 461, 246.
doi: 10.1038/nature08288 |
[21] |
Na, K.; Jo, C.; Kim, J.; Cho, K.; Jung, J.; Seo, Y.; Messinger, R. J.; Chmelka, S. F.; Ryoo, R. Science 2011, 333, 246.
|
[22] |
Park, W.; Yu, D.; Na, K.; Jelfs, K. E.; Slater, B.; Sakamoto, Y.; Ryoo, R. Chem. Mater. 2011, 23, 5131.
doi: 10.1021/cm201709q |
[23] |
Emdadi, L.; Wu, Y. Q.; Zhu, G. H.; Chang, C. C.; Fan, W.; Pham, T.; Lobo, R. F.; Liu, D. X. Chem. Mater. 2014, 26, 1345.
doi: 10.1021/cm401119d |
[24] |
Emdadi, L.; Tran, D. T.; Schulman, E.; Wei, L.; Shang, W. J.; Chen, H. Y.; Liu, D. X. Micropor. Mesopor. Mater. 2019, 275, 31.
doi: 10.1016/j.micromeso.2018.08.007 |
[25] |
Kim, Y.; Kim, Y.; Ryoo, R. Chem. Mater. 2017, 29, 1752.
doi: 10.1021/acs.chemmater.6b05338 |
[26] |
Chen, J. Q.; Li, Y. Z.; Hao, Q. Q.; Chen, H. Y.; Liu, Z. T.; Dai, C. Y.; Zhang, J. B.; Ma, X. X.; Liu, Z. W. Nat. Sci. Rev. 2020, 8, nwaa236.
doi: 10.1093/nsr/nwaa236 |
[27] |
Yuan, D. L.; Kang, C. Y.; Wang, W. N.; Li, H.; Zhu, X. C.; Wang, Y. D.; Gao, X. H.; Wang, B. J.; Zhao, H. J.; Liu, C. H.; Shen, B. J. Catal. Sci. Technol. 2016, 6, 8364.
doi: 10.1039/C6CY01841F |
[28] |
Verboekend, D.; Pérez-Ramírez, J. Catal. Sci. Technol. 2011, 6, 879.
|
[29] |
Zhang, N. N.; Zhang, Z. Z.; Li, G.; Xu, L.; Lan, T. W.; Gao, T.; Ma, X. X. Chem. Ind. Eng. Prog. 2018, 37, 4616. (in Chinese)
|
( 张妮娜, 张壮壮, 李刚, 徐龙, 兰婷玮, 高婷, 马晓迅, 化工进展, 2018, 37, 4616.)
|
|
[30] |
Ogura, M.; Shinomiya, S.; Tateno, J.; Nara, Y.; Nomura, M.; Kikuchi, E.; Matsukata, M. Appl. Catal. A-Gen. 2001, 219, 33.
doi: 10.1016/S0926-860X(01)00645-7 |
[31] |
Jacobsen, C. J. H.; Madsen, C.; Janssens, T. V. W.; Jacobsen, H. J.; Skibsted, J. Micropor. Mesopor. Mater. 2000, 39, 393.
doi: 10.1016/S1387-1811(00)00215-8 |
[32] |
Chen, H. Y.; Wydra, J.; Zhang, X. Y.; Lee, P. S.; Wang, Z. P.; Fan, Wei.; Tsapatsis, M. J. Am. Chem. Soc. 2011, 133, 12390.
doi: 10.1021/ja2046815 |
[33] |
Lee, P. S.; Hong, D. Y.; Cha, G. Y.; An, H.; Moon, S. Y.; Seong, M.; Chang, B. J.; Lee, J. S.; Kim, J. H. Sep. Purif. Technol. 2019, 210, 29.
doi: 10.1016/j.seppur.2018.07.082 |
[34] |
Sun, J. L.; Bonneau, C.; Cantín, Á.; Croma, A.; Díaz-Cabañas, M. J.; Moliner, M.; Zhang, D. L.; Li, M. R.; Zou, X. D. Nature 2009, 458, 1154.
doi: 10.1038/nature07957 |
[35] |
Wen, J. L.; Zhang, J. H.; Jiang, J. X. Chem. J. Chinese U. 2021, 42, 101. (in Chinese)
|
( 闻嘉丽, 张均豪, 姜久兴, 高等学校化学学报, 2021, 42, 101.)
|
|
[36] |
Corma, A.; Díaz-Cabañas, M. J.; Jiang, J.; Afeworki, M.; Dorset, D. L.; Soled, S. L.; Strohmaier, K. G. Proc. Natl Acad. Sci. 2010, 107, 13997.
doi: 10.1073/pnas.1003009107 |
[37] |
Jiang, J. X.; Jorda, J. L.; Diaz-Cabanas, M. J.; Yu, J. H.; Corma, A. Angew. Chem. Int. Ed. 2010, 49, 4986.
doi: 10.1002/anie.v49:29 |
[38] |
Jiang, J. X.; Jorda, J. L.; Yu, J. H.; Baumes, L. A.; Mugnaioli, E.; Diaz-Cabanas, M. J.; Kolb, U.; Corma, A. Science 2011, 333, 1131.
doi: 10.1126/science.1208652 |
[39] |
Martinez-Franco, R.; Moliner, M.; Yun, Y. F.; Sun, J. L.; Wan, W.; Zou, X. D.; Corma, A. Proc. Natl. Acad. Sci. 2013, 110, 3749.
doi: 10.1073/pnas.1220733110 |
[40] |
Chen, F. J.; Xu, Y.; Du, H. B. Angew. Chem. Int. Ed. 2014, 53, 9596.
|
[41] |
Wheatley, P. S.; Chlubná-Eliášová, P.; Greer, H.; Zhou, W. Z.; Seymour, V. R.; Ashbrook, S. E.; Pinar, A. B.; McCusker, L. B.; Opanasenko, M.; Čejka, J.; Morris, R. E. Angew. Chem. Int. Ed. 2014, 53, 13210.
doi: 10.1002/anie.201407676 |
[42] |
Smeets, S.; Xie, D.; Baerlocher, C.; McCusker, L. B.; Wan, W.; Zou, X. D.; Zones, S. I. Angew. Chem. Int. Ed. 2014, 53, 10398.
doi: 10.1002/anie.201405658 |
[43] |
Willhammar, T.; Burton, A. W.; Yun, Y. F.; Sun, J. L.; Afeworki, M.; Strohmaier, K. G.; Vroman, H.; Zou, X. D. J. Am. Chem. Soc. 2014, 136, 13570.
doi: 10.1021/ja507615b |
[44] |
Yun, Y. F.; Hernández, M.; Wan, W.; Zou, X. D.; Jorda, J. L.; Cantin, A.; Rey, F.; Corma, A. Chem. Commun. 2015, 51, 7602.
doi: 10.1039/C4CC10317C |
[45] |
Jiang, J. X.; Yun, Y. F.; Zou, X. D.; Jorda, J. L.; Corma, A. Chem. Sci. 2015, 6, 480.
doi: 10.1039/C4SC02577F |
[46] |
Jo, C.; Lee, S.; Cho, S. J.; Ryoo, R. Chem. Sci. 2015, 54, 12805.
|
[47] |
Smeets, S.; Berkson, Z. J.; Dan, X.; Zones, S. I.; Zou, X. D.; Hsieh, M. F.; Chmelka, B. F.; McCusker, L. B.; Baerlocher, C. J. Am. Chem. Soc. 2017, 139, 16803.
doi: 10.1021/jacs.7b08810 |
[48] |
Zhang, C. Q.; Kapaca, E.; Li, J. Y.; Liu, Y. L.; Yi, X. F.; Zheng, A.; Zou, X. D.; Jiang, J. X.; Yu, J. H. Angew. Chem. Int. Ed. 2018, 57, 6486.
doi: 10.1002/anie.v57.22 |
[49] |
Yang, B. T.; Jiang, J. G.; Xu, H.; Wu, H. H.; He, M. Y.; Wu, P. Angew. Chem. Int. Ed. 2018, 57, 9515.
doi: 10.1002/anie.201805535 |
[50] |
Zi, W. W.; Gao, Z. H.; Zhang, J.; Zhao, B. X.; Cai, X. S.; Du, H. B.; Chen, F. J. Angew. Chem. Int. Ed. 2020, 59, 3948.
doi: 10.1002/anie.v59.10 |
[51] |
Villaescusa, L. A.; Li, J.; Gao, Z. H.; Sun, J. L.; Camblor, M. A. Angew. Chem. Int. Ed. 2020, 59, 11283.
doi: 10.1002/anie.v59.28 |
[52] |
Gao, Z. H.; Li, J.; Lin, C.; Mayoral, A.; Sun, J. L.; Camblor, M. A. Angew. Chem. Int. Ed. 2021, 60, 3438.
doi: 10.1002/anie.v60.7 |
[53] |
Kapaca, E.; Jiang, J. X.; Cho, J.; Jordá, J. L.; Díaz-Cabañas, M. J.; Zou, X. D.; Corma, A.; Willhammar, T. J. Am. Chem. Soc. 2021, 143, 8713.
doi: 10.1021/jacs.1c02654 |
[54] |
Roth, W. J.; Čejka, J. Catal. Sci. Technol. 2011, 1, 43.
doi: 10.1039/c0cy00027b |
[55] |
Opanasenko, M. V.; Roth, W. J.; Čejka, J. Catal. Sci. Technol. 2016, 6, 2467.
doi: 10.1039/C5CY02079D |
[56] |
Xu, L.; Sun, J. L. Adv. Energy Mater. 2016, 6, 1600441.
doi: 10.1002/aenm.v6.17 |
[57] |
Xu, R. R.; Pang, W, Q.; Huo, Q. S. Molecular Sieve and Porous Material Chemistry (Second Edition), Science Press, Beijing, 2014. (in Chinese)
|
( 徐如人, 庞文琴, 霍启升, 分子筛与多孔材料化学第二版, 科学出版社, 北京, 2014.)
|
|
[58] |
Davis, M. E.; Lobo, R. F. Chem. Mater. 1992, 4, 756.
doi: 10.1021/cm00022a005 |
[59] |
Hu, C. Y.; Yan, W. F.; Xu, R. R. Acta Chim. Sinica 2017, 75, 679. (in Chinese)
doi: 10.6023/A17040169 |
( 胡成玉, 闫文付, 徐如人, 化学学报, 2017, 75, 679.)
|
|
[60] |
Rabenau, A. Angew. Chem. Int. Ed. 1985, 24, 1026.
doi: 10.1002/(ISSN)1521-3773 |
[61] |
Ling, Y.; Zheng, Y. T.; Liu, Y. M.; Wang, Z. D.; Wu, H. H.; Wu, P. Acta Chim. Sinica 2010, 68, 2035. (in Chinese)
|
( 凌云, 郑玉婷, 刘月明, 王振东, 吴海虹, 吴鹏, 化学学报, 2010, 68, 2035.)
|
|
[62] |
Braun, I.; Schulz-Ekloff', G.; Wohrle, D.; Lautenschlager, W. Micropor. Mesopor. Mater. 1998, 23, 79.
doi: 10.1016/S1387-1811(98)00180-2 |
[63] |
Full text database of Science Direct. Elsevier, https://www.sciencedirect.com/.
|
[64] |
Vercammen, J.; Bocus, M.; Neale, S.; Bugaev, A.; Tomkins, P.; Hajek, J.; Van Minnebruggen, S.; Soldatov, A.; Krajnc, A.; Mali, G.; Speybroeck, V. V.; Vos, D. E. D. Nat. Catal. 2020, 3, 1002.
doi: 10.1038/s41929-020-00533-6 |
[65] |
Xu, L. L.; Zhao, R. R.; Zhang, W. P. App. Catal. B 2020, 279, 1002.
|
[66] |
Sun, M. H.; Zhou, J.; Hu, Z. Y.; Chen, L. H.; Li, L. Y.; Wang, Y. D.; Xie, Z. K.; Turner, S.; Van Tendeloo, G.; Hasan, T.; Su, B. L. Matter 2020, 3, 1.
doi: 10.1016/j.matt.2020.06.018 |
[67] |
Leonowicz, M. E.; Roth, W. J.; Kresge, C. T.; Vartuli, J. C.; Beck, J. S. Nature 1992, 359, 710.
doi: 10.1038/359710a0 |
[68] |
Pan, D.; Wang, Y. M.; Jiang, L. H. Chem. Ind. Eng. Prog. 2016, 35, 2500. (in Chinese)
|
( 潘登, 王亚明, 蒋丽红, 化工进展, 2016, 35, 2500.)
|
|
[69] |
Srivastava, R.; Ryoo, R.; Choi, M.; Venkatesan, C.; Cho, H. S.; Choi, D. H. Nat. Mater. 2006, 5, 718.
doi: 10.1038/nmat1705 |
[70] |
Meier, W. M. Monograph on “Molecular Sieves”, Society of Chemical Industry, London, 1968, pp. 10-27.
|
[71] |
Meier, W. M.; Olson, D. H. Atlas of zeolites and Related Materials. Butterworths, London, 1987, p. 5.
|
[72] |
Smith, J. V. Chem. Rev. 1988, 88, 149.
doi: 10.1021/cr00083a008 |
[73] |
Smith, J. V. Tetrahedral Frameworks of Zeolites, Clathrates Related Materials, Vol. 14A, Springer, Berlin, 2000, p. 266.
|
[74] |
Kokotailo, G. T.; Lawton, S. L.; Olson, D. H.; Meier, W. M. Nature 1978, 272, 437.
doi: 10.1038/272437a0 |
[75] |
Palčića, A.; Valtchev, V. Appl. Catal. A-Gen. 2020, 606, 117795.
doi: 10.1016/j.apcata.2020.117795 |
[76] |
Rabo, J. A.; Schoonove Michael, W. R. Appl. Catal. A-Gen. 2001, 222, 261.
doi: 10.1016/S0926-860X(01)00840-7 |
[77] |
Serrano, D. P.; Van, G. R. J. Mater. Chem. 2001, 11, 2391.
doi: 10.1039/b100818h |
[78] |
Kong, X. J.; Bai, Y, H.; Yan, L. J.; Li, F. Fuel 2016, 180, 205.
doi: 10.1016/j.fuel.2016.03.101 |
[79] |
Wei, B. Y.; Jin, L. J.; Wang, D. C.; Shi, H.; Hu, H. Q. Fuel, 2020, 259, 116234.
doi: 10.1016/j.fuel.2019.116234 |
[80] |
Sun, M.; Liu, Y. Q.; Zhang, D.; Ma, M. M.; Yao, Q. X.; Jia, Q.; Ma, X. X. J. China U. Min. Techno. 2019, 48, 647. (in Chinese)
|
( 孙鸣, 刘永琦, 张丹, 马明明, 么秋香, 贾强, 马晓迅, 中国矿业大学学报, 2019, 48, 647.)
|
|
[81] |
Liu, Y. Q.; Yao, Q. X.; Sun, M.; Ma, X. X. J. Anal. Appl. Pyrolysis 2021, 156, 105127.
doi: 10.1016/j.jaap.2021.105127 |
[82] |
Wang, L. Y.; Wang, Q.; Liu, Y. Q.; Yao, Q. X.; Sun, M.; Ma, X. X. Chin. J. Chem. Eng. 2021. https://doi.org/10.1016/j.cjche.2021.09.012
|
[83] |
Yao, Q. X.; Liu, Y. Q.; Zhang, D.; Sun, M.; Ma, X. X. ACS Omega 2021, 6, 4062.
doi: 10.1021/acsomega.0c06123 |
[84] |
Gac, W.; Zawadzki, W.; Słowik, G.; Kuśmierz, M.; Dzwigaj, S. Appl. Surf. Sci. 2021, 564, 150421.
doi: 10.1016/j.apsusc.2021.150421 |
[85] |
Rahman, M. M.; Liu, R. H.; Cai, J. M. Fuel Process. Technol. 2018, 180, 32.
doi: 10.1016/j.fuproc.2018.08.002 |
[86] |
Kostyniuk, A.; Grilc, M.; Likozar, B. Ind. Eng. Chem. Res. 2019, 58, 7690.
doi: 10.1021/acs.iecr.9b01219 |
[87] |
Kostyniuk, A.; Bajec, D.; Likozar, B. Appl. Catal. A-Gen. 2021, 612, 118004.
doi: 10.1016/j.apcata.2021.118004 |
[88] |
Li, F. W.; Ding, S. L.; Wang, Z. H.; Li, Z. X.; Li, L.; Gao, C.; Zhong, Z.; Lin, H. F.; Chen, C. J. Energy Fuels 2018, 32, 5910.
doi: 10.1021/acs.energyfuels.7b04150 |
[89] |
Moreno-Recio, M.; Santamaría-González, J.; Maireles-Torres, P. Chem. Eng. J. 2016, 303, 22.
doi: 10.1016/j.cej.2016.05.120 |
[90] |
Jae, J.; Tompsett, G. A.; Foster, A. J.; Hammond, K. D.; Auerbach, S. M.; Lobo, R. F.; Huber, G. W. J. Catal. 2011, 279, 257.
doi: 10.1016/j.jcat.2011.01.019 |
[91] |
Chen, G. B.; Waterhouse, G. I. N.; Shi, R.; Zhao, J. Q.; Li, Z. H.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Angew. Chem. Int. Ed. 2019, 58, 17528.
doi: 10.1002/anie.v58.49 |
[92] |
Zhou, W.; Cheng, K.; Kang, J. C.; Zhou, C.; Subramanian, V.; Zhang, Q. H.; Wang, Y. Chem. Soc. Rev. 2019, 48, 3193.
doi: 10.1039/C8CS00502H |
[93] |
Jiao, F.; Li, J. J.; Pan, X. L.; Xiao, J. P.; Li, H. B.; Ma, H.; Wei, M. M.; Pan, Y.; Zhou, Z. Y.; Li, M. R.; Miao, S.; Li, J.; Zhu, Y. F.; Xiao, D.; He, T.; Yang, J. H.; Qi, F.; Fu, Q.; Bao, X. H. Science 2016, 351, 1065.
doi: 10.1126/science.aaf1835 |
[94] |
Jiao, F.; Pan, X. L.; Gong, K.; Chen, Y. X.; Li, G.; Bao, X. H. Angew. Chem. Int. Ed. 2018, 57, 4692.
doi: 10.1002/anie.v57.17 |
[95] |
Liu, X. L.; Zhou, W.; Yang, Y. D.; Cheng, K.; Kang, J. C.; Zhang, L.; Zhang, G. Q.; Min, X. J.; Zhang, Q. H.; Wang, Y. Chem. Sci. 2018, 9, 4708.
doi: 10.1039/C8SC01597J |
[96] |
Zhang, P.; Meng, F. H.; Li, X. J.; Yang, L. L.; Ma, P. C.; Li, Z. Catal. Sci. Technol. 2018, 9, 5577.
doi: 10.1039/C9CY01348B |
[97] |
Santos, V. P.; Pollefeyt, G.; Yancey, D. F.; Ciftci Sandikci, A.; Vanchura, B.; Nieskens, D. L. S.; De Kok-Kleiberg, M.; Kirilin, A.; Chojecki, A.; Malek, A. J. Catal. 2020, 381, 108.
doi: 10.1016/j.jcat.2019.08.027 |
[98] |
Wang, M. H.; Kang, J. C.; Xiong, X. W.; Zhang, F. Y.; Cheng, K.; Zhang, Q. H.; Wang, Y. Catal. Today 2021, 371, 85.
doi: 10.1016/j.cattod.2020.07.076 |
[99] |
Su, J. J.; Liu, C.; Liu, S. L.; Ye, Y. C.; Du, Y. J.; Zhou, H. B.; Liu, S.; Jiao, W. Q.; Zhang, L.; Wang, C. M.; Wang, Y. D.; Xie, Z. K. Cell Rep. Phys. Sci. 2021, 2, 100290.
|
[100] |
Ji, Y. J.; Zhang, B.; Zhang, K.; Xu, L.; Peng, H. G.; Wu, P. Acta Chim. Sinica 2013, 71, 371. (in Chinese)
doi: 10.6023/A12110980 |
( 纪永军, 张斌, 张坤, 徐乐, 彭洪根, 吴鹏, 化学学报, 2013, 71, 371.)
|
|
[101] |
Yang, J. H.; Pan, X. L.; Jiao, F.; Li, J.; Bao, X. H. Chem. Commun. 2017, 53, 11146.
doi: 10.1039/C7CC04768A |
[102] |
Cheng, L. K.; Meng, C.; Yang, T. H.; Li, N.; Liu, D. H. Energy Fuels 2018, 32, 9756.
doi: 10.1021/acs.energyfuels.8b01965 |
[103] |
Xu, Y. F.; Wang, J.; Ma, G. Y.; Bai, J. Y.; Du, Y. X.; Ding, M. Y. Appl. Catal. A-Gen. 2020, 598, 117589.
doi: 10.1016/j.apcata.2020.117589 |
[104] |
Liu, C.; Su, J. J.; Xiao, Y.; Zhou, J.; Liu, S.; Zhou, H. B.; Ye, Y. C.; Lu, Y. Q.; Zhang, Y. D.; Jiao, W. Q.; Zhang, L.; Wang, Y. D.; Wang, C. M.; Zheng, X. S.; Xie, Z. K. Chem Catal. 2021, 1, 1.
|
[105] |
Miao, D. Y.; Pan, X. L.; Jiao, F.; Ji, Y.; Hou, G. J.; Xu, L.; Bao, X. H. Catal. Sci. Technol. 2021, 11, 4521.
doi: 10.1039/D1CY00602A |
[106] |
Mac Dowell, N.; Fennell, P. S.; Shah, N.; Maitland, G. C. Nat. Clim. Change 2017, 7, 243.
doi: 10.1038/nclimate3231 |
[107] |
Aresta, M.; Dibenedetto, A.; Angelini, A. Chem. Rev. 2014, 114, 1709.
doi: 10.1021/cr4002758 |
[108] |
Li, J.; Yu, T.; Miao, D. Y.; Pan, X. L.; Bao, X. H. Catal. Commun. 2019, 12, 105711.
|
[109] |
Gao, P.; Dang, S. S.; Li, S. G.; Bu, X. N.; Liu, Z. Y.; Qiu, M. H.; Yang, C. G.; Wang, H.; Zhong, L. S.; Han, Y.; Liu, Q.; Wei, W.; Sun, Y. H. ACS Catal. 2018, 8, 571.
doi: 10.1021/acscatal.7b02649 |
[110] |
Liu, X. L.; Wang, M. H.; Yin, H. R.; Hu, J. T.; Cheng, K.; Kang, J. C.; Zhang, Q. H.; Wang, Y. ACS Catal. 2020, 10, 8303.
doi: 10.1021/acscatal.0c01579 |
[111] |
Ni, Y. M.; Chen, Z. Y.; Fu, Y.; Liu, Y.; Zhu, W. L.; Liu, Z. M. Nat. Commun. 2018, 9, 3457.
doi: 10.1038/s41467-018-05880-4 |
[112] |
Dai, C. Y.; Zhao, X.; Hu, B. R.; Zhang, J. X.; Hao, Q. Q.; Chen, H. Y.; Guo, X. W.; Ma, X. X. Ind. Eng. Chem. Res. 2020, 59, 19194.
doi: 10.1021/acs.iecr.0c03598 |
[113] |
Zhang, J. F.; Zhang, M.; Chen, S. Y.; Wang, X. X.; Zhou, Z. L.; Wu, Y. Q.; Zhang, T.; Yang, G. H.; Han, Y. Z.; Tan, Y. S. Chem. Commun. 2019, 5, 973.
|
[114] |
Wei, J.; Yao, R. W.; Ge, Q. J.; Xu, D. Y.; Fang, C. Y.; Zhang, J. X.; Xu, H. Y.; Sun, J. Appl. Catal. B 2021, 283, 119648.
|
[115] |
Leonowicz, M. E.; Lawton, J. A.; Lawton, S. L.; Rubin, M. K. Science 1994, 264, 1910.
|
[116] |
Lawton, S. L.; Fung, A. S.; Kennedy, G. J.; Alemany, L. B.; Chang, C. D.; Hatzikos, G. H.; Lissy, D. N.; Rubin, M. K.; Timken, H. C.; Steuernagel, S.; Woessner, D. E. J. Phys. Chem. 1994, 100, 3788.
|
[117] |
Fan, W. B.; Wu, P.; Namba, S.; Tatsumi, T. Angew. Chem. Int. Ed. 2004, 43, 236.
|
[118] |
Wu, P.; Ruan, J. F.; Wang, L. L.; Wu, L. L.; Wang, Y.; Liu, Y. M.; Fan, W. B.; He, M. Y.; Terasaki, O.; Tatsumi, T. J. Am. Chem. Soc. 2008, 130, 8178.
|
[119] |
Roth, W. J.; Kresge, C. T.; Vartuli, J. C.; Leonowicz, M. E.; Fung, A. S.; Mccullen, S. B. Studies in Surface Science and Catalysis, Vol. 94, Elsevier Science & Technology, Szombathely, Hungary, 1995, p. 301.
|
[120] |
Corma, A.; Díaz, U.; García, T.; Sastre, G.; Velty, A. J. Am. Chem. Soc. 2010, 132, 15011.
|
[121] |
Corma, A.; Pergher, S. B.; Fornes, V.; Maesen, T. L. M.; Buglass, J. G. Nature 1998, 396, 353.
|
[122] |
Varoon, K.; Zhang, X. Y.; Elyassi, B.; Brewer, D. D.; Gettel, M.; Kumar, S.; Lee, J. A.; Maheshwari, S.; Mittal, A.; Sung, C. Y.; Cococcioni, M.; Francis, L. F.; Mccormick, A. V.; Mkhoyan, K. A.; Tsapatsis, M. Science 2011, 333, 72.
|
[123] |
Roth, W. J. Chapter 7-Synthesis of delaminated and pillared zeolitic materials. Studies in Surface Science and Catalysis, 2007, 168, 221.
|
[124] |
Schreyeck, L.; Caullet, P.; Mougenel, J. C.; Guth, J. L.; Marler, B. Micropor. Mater. 1996, 6, 259.
|
[125] |
Park, W.; Yu, D.; Na, K.; Jelfs, K. E.; Slater, B.; Sakamoto, Y.; Ryoo, R. Chem. Mater. 2011, 23, 5131.
|
[126] |
Roth, W. J.; Dorset, D. L.; Kennedy, G. J. Micropor. Mesopor. Mater. 2011, 142, 168.
|
[127] |
Roth, W. J. Stud. Surf. Sci. Catal. 2005, 158, 19.
|
[128] |
Poloij, M.; Thang, H. V.; Rubeš, M.; Eliášová, P.; Čejka, J.; Nachtigall, P. Dalton Trans. 2014, 43, 1443.
|
[129] |
Zhang, X. Y.; Liu, D. X.; Xu, D. D.; Asahina, S.; Cychosz, K. A.; Agrawal, K. V.; Al Wahedi, Y.; Bhan, A.; Al Hashimi, S.; Terasaki, O.; Thommes, M.; Tsapatsis, M. Science 2012, 336, 1684.
|
[130] |
Luo, H. Y.; Michaelis, V. K.; Hodges, S.; Griffin, R. G.; Roman- Leshkov, Y. Chem. Sci. 2015, 6, 6320.
|
[131] |
Grzybek, J.; Roth, W. J.; Gil, B.; Korzeniowska, A.; Mazur, M.; Cejka, J.; Morris, R. E. J. Mater. Chem. A 2019, 7, 7701.
|
[132] |
Emdadi, L.; Wu, Y. Q.; Zhu, G. H.; Chang, C. C.; Fan, W.; Pham, T.; Lobo, R. F.; Liu, D. X. Chem. Mater. 2014, 26, 1345.
|
[133] |
Emdadi, L.; Liu, D. X. J. Mater. Chem. A: Mater. Energy Sust. 2014, 2, 13388.
|
[134] |
Margarit, V. J.; Martínez-Armero, M. E.; Navarro, M. T.; Martínez, C.; Corma, A. Angew. Chem. Int. Ed. 2015, 54, 13724.
|
[135] |
Wang, M. Y.; Wang, X.; You, Q.; Wu, Y. S.; Yang, X.; Chen, H. Y.; Liu, B. Y.; Hao, Q. Q.; Zhang, J. B.; Ma, X. X. Micropor. Mesopor. Mater. 2021, 323, 111207.
|
[136] |
Wang, R. S.; Peng, Z. H.; Wu, P. P.; Lu, J. Z.; Rood, M. J.; Sun, H. M.; Zeng, J. B.; Wang, Y. H.; Yan, Z. F. Chem. Eur. J. 2021, 27, 8694.
|
[137] |
Roth, W. J.; Shvets, O. V.; Shamzhy, M.; Chlubná, P.; Kubů, M.; Nachtigall, P.; Čejka, J. J. Am. Chem. Soc. 2011, 133, 6030.
|
[138] |
Paillaud, J. L.; Harbuzaru, B.; Patarin, J.; Bats, N. Sci. 2004, 304, 990.
|
[139] |
Corma, A.; Diaz-Cabanas, M. J.; Rey, F.; Nicolooulas, S.; Boulahya, K. Chem. Commun. 2004, 12, 1356.
|
[140] |
Xu, L.; Choudhary, M. K.; Muraoka, K.; Chaikittisilp, W.; Wakihara, T.; Rimer, J. D.; Okubo, T. Angew. Chem. Int. Ed. 2019, 58, 14529.
|
[141] |
Schieber, T. A.; Carpi, L.; Diaz-Guilera, A.; Pardalos, P. M.; Masoller, C.; Ravetti, M. G. Nat. Commun. 2017, 8, 13928.
|
[142] |
Roth, W. J.; Nachtigall, P.; Morris, R. E.; Wheatley, P. S.; Seymour, V. R.; Ashbrook, S. E.; Chlubna, P.; Grajciar, L.; Polozij, M.; Zukal, A.; Shvets, O.; Cejka, J. Nat. Chem. 2013, 5, 628.
|
[143] |
Shamzhy, M.; Opanasenko, M.; Tian, Y. Y.; Konysheva, K.; Shvets, O.; Morris, R. E.; Čejka, J. Chem. Mater. 2014, 26, 5789.
|
[144] |
Chlubná-Eliášová, P.; Tian, Y. Y.; Pinar, A. B.; Kubů, M.; Čejka, J.; Morris, R. E. Angew. Chem. Int. Ed. 2014, 53, 7048.
|
[145] |
Wheatley, P. S.; Chlubná-Eliášová, P.; Greer, H.; Zhou, W. Z.; Seymour, V. R.; Dawson, D. M.; Ashbrook, S. E.; Pinar, A. B.; McCusker, L. B.; Opanasenko, M.; Čejka, J.; Morris, R. E. Angew. Chem. Int. Ed. 2014, 53, 13210.
|
[146] |
Eliášová, P.; Opanasenko, M.; Wheatley, P. S.; Shamzhy, M.; Mazur, M.; Nachtigall, P.; Roth, W. J.; Morris, R. E.; Čejka, J. Chem. Mater. 2015, 44, 7177.
|
[147] |
Zhang, J.; Veselý, O.; Tošner, Z.; Mazur, M.; Opanasenko, M.; Čejka, J.; Shamzhy, M. Chem. Mater. 2021, 33, 1228.
|
[148] |
Mazur, M.; Chlubná-Eliášová, P.; Roth, W. J.; Čejka, J. Catal. Today 2014, 227, 37.
|
[149] |
Morris, R. E.; Wormald, P.; Webb, P. B.; Cooper, E. R.; Wheatley, P. S.; Andrews, C. D. Nature 2004, 430, 1012.
|
[150] |
Opanasenko, M.; Parker, W. O.; Shamzhy, M.; Montanari, E.; Bellettato, M.; Mazur, M.; Millini, R.; Čejka, J. J. Am. Chem. Soc. 2014, 136, 2511.
|
[151] |
Mazur, M.; Wheatley, P. S.; Navarro, M.; Roth, W. J.; Polozij, M.; Mayoral, A.; Eliasova, P.; Nachtigall, P.; Cejka, J.; Morris, R. E. Nat. Chem. 2016, 8, 58.
|
[152] |
Opanasenko, M.; Shamzhy, M.; Wang, Y. Z.; Yan, W. F.; Nachtigall, P.; Čejka, J. Angew. Chem. Int. Ed. 2020, 59, 19380.
|
[153] |
Pophale, R.; Cheeseman, P. A.; Deem, M. W. Phys. Chem. Chem. Phys. 2011, 13, 12407.
|
[154] |
Liu, L. C.; Diaz, U.; Arenal, R.; Agostini, G.; Concepcion, P.; Corma, A. Nat. Mater. 2017, 16, 132.
|
[155] |
Zhang, Y. Y.; Kubů, M.; Mazur, M.; Čejka, J. Micropor. Mesopor. Mater. 2019, 279, 364.
|
[156] |
Shamzhy, M.; Gil, B.; Opanasenko, M.; Roth, W. J.; Čejka, J. ACS Catal. 2021, 11, 2366.
|
[157] |
Pérez-Ramírez, J.; Verboekend, D.; Bonilla, A.; Abelló, S. Adv. Funct. Mater. 2009, 19, 3972.
|
[158] |
Josuinkas, F. M.; Quitete, C. P. B.; Ribeiro, N. F. P.; Souza, M. M. V. M. Fuel Process. Technol. 2014, 121, 76.
|
[159] |
Li, Z. K.; Wang, H. T.; Yan, H. L.; Yan, J. C.; Lei, Z. P.; Ren, S. B; Wang, Z. C.; Kang, S. G.; Shui, H. F. Fuel 2021, 287.
|
[160] |
Wang, L.; Chen, J. H.; Watanabe, H.; Xu, Y.; Tamura, M.; Nakagawa, Y.; Tomishige, K. Appl. Catal. B-Environ. 2014, 160-161, 701.
|
[161] |
Naqvi, S. R.; Uemura, Y.; Yusup, S.; Sugiura, Y.; Nishiyama, N. J. Anal. Appl. Pyrol. 2015, 114, 32.
|
[162] |
Naqvi, S. Raza.. Naqvi, M.. Inayat, A.. Blanco-Sanchez, P. J. Anal. Appl. Pyrol. 2021, 155, 105025.
|
[163] |
Wang, N.; Sun, Q. M.; Zhang, T. J.; Mayoral, A.; Li, L.; Zhou, X.; Xu, J.; Zhang, P.; Yu, J. H. J. Am. Chem. Soc. 2021, 143, 6905.
|
[164] |
Wojtaszek-Gurdak, A.; Trejda, M.; Kryszak, D.; Ziolek, M. Micropor. Mesopor. Mater. 2014, 197, 185.
|
[165] |
Hadi, N.; Alizadeh, R.; Niaei, A. J. Ind. Eng. Chem. 2017, 54, 82.
|
[166] |
Hu, S.; Shan, J.; Zhang, Q.; Wang, Y.; Liu, Y. S.; Gong, Y. J.; Wu, Z. J.; Dou, T. Appl. Catal. A-Gen. 2012, 445, 215.
|
[167] |
Kim, Y. J.; Kim, J. C.; Jo, C. B.; Kim, T. W.; Kim, C. U.; Jeong, S. J.; Chae, H. J. Micropor. Mesopor. Mater. 2016, 222, 1.
|
[168] |
Peral, A.; Escola, J. M.; Serrano, D. P.; Prech, J.; Ochoa-Hernandez, C.; Cejka, J. Catal. Sci. Technol. 2016, 6, 2754.
|
[169] |
Aguado, J.; Serrano, D. P.; Romero, M. D.; Escola, J. M. Chem. Commun. 1996, 6, 725.
|
[170] |
Serrano, D. P.; Aguado, J.; Escola, J. M. Ind. Eng. Chem. Res. 2000, 39, 1177.
|
[171] |
Tian, Y. J.; Qiu, Y.; Hou, X.; Wang, L.; Liu, G. Z. Energy Fuels 2017, 31, 11987.
|
[172] |
Xie, W. J.; Fang, W. J.; Xing, Y.; Guo, Y. S.; Lin, R. S. Acta Chim. Sinica 2009, 67, 6. (in Chinese)
|
( 谢文杰, 方文军, 邢燕, 郭永胜, 林瑞森, 化学学报, 2009, 67, 6.)
|
|
[173] |
Thang, H. V.; Vaculík, J.; Přech, J.; Kubů, M.; Čejka, J.; Nachtigall, P.; Bulánek, R.; Grajciar, L. Micropor. Mesopor. Mater. 2019, 282, 121.
|
[174] |
Thibault-Starzyk, F.; Stan, I.; Abelló, S.; Bonilla, A.; Thomas, K.; Fernandez, C.; Gilson, J. P.; Pérez-Ramírez, J. J. Catal. 2009, 264, 11.
|
[175] |
Yuan, M. T.; Zhao, D. Y.; Hao, Q. Q.; Luo, Q. X.; Zhang, J. B.; Chen, H. Y.; Sun, M.; Xu, L.; Ma, X. X. Ind. Eng. Chem. Res. 2020, 59, 16312.
|
[176] |
Cheung, P.; Bhan, A.; Sunley, G. J.; Iglesia, E. Angew. Chem. Int. Ed. 2006, 45, 1617.
|
[177] |
Cheung, P.; Bhan, A.; Sunley, G. J.; Law, D. J.; Iglesia, E. J. Catal. 2007, 245, 110.
|
[178] |
Lakiss, L.; Vicente, A.; Gilson, J. P.; Valtchev, V.; Mintova, S.; Vimont, A.; Bedard, R.; Abdo, S.; Bricker, J. ChemPhysChem 2020, 21, 1873.
|
[179] |
Weitkamp, J. Solid State Ionics 2000, 131, 175.
|
[180] |
Shi, J.; Wang, Y. D.; Yang, W. M.; Tang, Y.; Xie, Z. K. Chem. Soc. Rev. 2015, 44, 8877.
|
[181] |
Jin, S. Q.; Sun, H. M.; Yang, W. M. Chem. J. Chinese U. 2021, 42, 217. (in Chinese)
|
( 金少青, 孙洪敏, 杨为民, 高等学校化学学报, 2021, 42, 217.)
|
|
[182] |
Li, Y. N.; Jin, Z. S.; Yang, W. M. ZL 201110194985.2, 2014. (in Chinese)
|
( 李亚男, 金照生, 杨为民, ZL 201110194985.2, 2014.)
|
|
[183] |
Yang, W. M.; Wang, Z. D.; Sun, H. M.; Zhang, B.; Huan, M. Y.; Shen, Z. H.; Xue, M. W. US 10099935, 2018.
|
[184] |
Liu, J. T. Green Chemical, Metallurgical and Materials Engineering, Chemical Industry Press, Beijing, 2018. (in Chinese)
|
( 刘炯天, 绿色化工、 冶金、材料工程, 化学工业出版社, 北京, 2018)
|
|
[185] |
Liu, H. X.; Xie, Z. K.; Guan, H. B.; Fang, J. D.; Zhao, Y.; Zhang, H. M. ZL 200810043289. X, 2010. (in Chinese)
|
( 刘红星, 谢在库, 管洪波, 方敬东, 赵昱, 张惠明, ZL 200810043289. X, 2010.)
|
[1] | 杨铃悦, 李赟婷, 舒超. 亚磺酸内酯研究进展[J]. 化学学报, 2024, 82(2): 171-189. |
[2] | 万义, 何江华, 张越涛. Lewis酸碱对催化极性烯烃单体精准聚合的研究进展★[J]. 化学学报, 2023, 81(9): 1215-1230. |
[3] | 洪梅, 高金强, 李彤, 杨世和. 原位刻蚀调控多级孔分子筛策略及其应用进展★[J]. 化学学报, 2023, 81(8): 937-948. |
[4] | 甘绍艳, 钟晟昱, 王力廷, 史雷. 有机高价溴试剂的合成及其应用研究[J]. 化学学报, 2023, 81(8): 1030-1042. |
[5] | 郑文山, 高冠斌, 邓浩, 孙涛垒. Ag2Se@Ag2S核壳量子点的室温合成及其近红外荧光性能优化[J]. 化学学报, 2023, 81(7): 763-770. |
[6] | 张艳东, 朱守非. 环丙烷骨架膦配体的研究展望★[J]. 化学学报, 2023, 81(7): 777-783. |
[7] | 坎比努尔•努尔买买提, 王超, 罗时玮, 阿布都热西提•阿布力克木. 电化学条件下α,α,α-三卤(氯, 溴)甲基酮类化合物的选择性脱卤反应研究[J]. 化学学报, 2023, 81(6): 582-587. |
[8] | 刘坜, 郑刚, 范国强, 杜洪光, 谭嘉靖. 4-酰基/氨基羰基/烷氧羰基取代汉斯酯参与的有机反应研究进展[J]. 化学学报, 2023, 81(6): 657-668. |
[9] | 王俊, 许晓梅, 周姣龙, 赵雅男, 孙秀丽, 唐勇, 何素芳, 杨红梅. 新型无硫无磷醚-酯化合物的合成及其作为无灰摩擦改进剂的性能研究[J]. 化学学报, 2023, 81(5): 461-468. |
[10] | 齐学平, 王飞, 张健. 后合成法构筑钛基金属有机框架及其应用[J]. 化学学报, 2023, 81(5): 548-558. |
[11] | 魏颖, 周平, 陈鑫, 包秋景, 解令海. 有机纳米环/格的研究进展[J]. 化学学报, 2023, 81(3): 289-308. |
[12] | 陈俊畅, 张明星, 王殳凹. 晶态多孔材料合成方法的研究进展[J]. 化学学报, 2023, 81(2): 146-157. |
[13] | 高杨, 张学鑫, 余金生, 周剑. α-手性三级叠氮化合物的不对称催化合成新进展★[J]. 化学学报, 2023, 81(11): 1590-1608. |
[14] | 王晓晨, 季泽尧, 刘健, 王炳福, 金辉, 张立新. 硫酯参与的有机催化不对称反应研究进展[J]. 化学学报, 2023, 81(1): 64-83. |
[15] | 陈治平, 孟永乐, 芦静, 周文武, 杨志远, 周安宁. Fe@Si/S-34催化剂的制备及其合成气制烯烃性能[J]. 化学学报, 2023, 81(1): 14-19. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||