化学学报 ›› 2023, Vol. 81 ›› Issue (6): 657-668.DOI: 10.6023/A23040118 上一篇 下一篇
综述
刘坜a,b, 郑刚a, 范国强a, 杜洪光b,*(), 谭嘉靖b,*()
投稿日期:
2023-04-06
发布日期:
2023-05-11
作者简介:
刘坜, 工程师, 北京化工大学化学学院化学专业2018级博士研究生, 研究方向为绿色化学以及光化学有机合成, 累计发表SCI论文5篇. 现就职于中石化(北京)化工研究院有限公司, 研究方向为茂金属催化剂合成. |
郑刚, 中石化(北京)化工研究院有限公司高级工程师, 硕士, 2013年获中石化科技进步一等奖(排名第三), 2020年获中石化前瞻性基础性研究二等奖(排名第三). 从事单中心催化剂开发应用研究, 在茂金属催化剂的工业应用、产品开发等领域取得系列进展, 获得中国专利授权70余项. |
范国强, 中石化(北京)化工研究院有限公司高级工程师, 博士, 主要从事茂金属催化剂及聚烯烃的研究开发工作, 研究开发了聚丙烯、聚乙烯及聚烯烃弹性体等系列茂金属催化剂, 开发的聚丙烯茂金属催化剂已成功工业应用. 2011年获中国石化科技进步奖一等奖, 2020年获中国石化前瞻性基础性研究科学奖二等奖. |
杜洪光, 博士, 北京化工大学化学学院教授, 博士生导师. 主要研究领域为药物化学和有机合成方法学, 累计发表SCI论文70余篇. |
谭嘉靖, 博士, 副教授. 本科毕业于中国科学技术大学, 2013年于美国芝加哥大学化学系获得博士学位, 师从Hisashi Yamamoto教授. 2013年至2016年在美国默沙东公司工艺化学部担任副研究员, 从事手性药物合成工艺研究. 2016年受聘到北京化工大学理学院(现化学学院), 担任副教授. 课题组长期在有机合成方法学和药物化学领域从事研究, 累计发表SCI论文50余篇. 作为项目负责人先后承担国家自然科学基金(面上、青年)、北京市自然科学基金. 作为项目骨干参与国家重点研发计划子课题. |
基金资助:
Li Liua,b, Gang Zhenga, Guoqiang Fana, Hongguang Dub(), Jiajing Tanb()
Received:
2023-04-06
Published:
2023-05-11
Contact:
*E-mail: dhg@mail.buct.edu.cn; tanjj@mail.buct.edu.cn
Supported by:
文章分享
近年来, 4-酰基、氨基羰基和烷氧羰基取代汉斯酯作为一种新型的自由基供体试剂, 已成为当前热门的研究方向之一. 该类化合物可以通过光化学、电化学或化学氧化等体系在温和条件下产生相应的酰基、氨基羰基或烷氧羰基自由基, 从而发生一系列自由基加成/偶联反应. 由于其所含二氢吡啶骨架具有还原性, 该类自由基前体常表现出独特的反应活性, 并且对于过渡金属催化、有机小分子催化的协同体系具有良好的兼容性. 此外, 该类反应条件通常具有环境友好、官能团适用性高以及生物兼容性良好等特点, 在药物化学和化学生物学领域具有重要的研究价值. 本综述将分别介绍酰基自由基、氨基羰基自由基和烷氧羰基自由基, 重点探讨自由基产生体系、反应机理以及基于汉斯酯骨架的合成策略所具有的独特性和应用.
刘坜, 郑刚, 范国强, 杜洪光, 谭嘉靖. 4-酰基/氨基羰基/烷氧羰基取代汉斯酯参与的有机反应研究进展[J]. 化学学报, 2023, 81(6): 657-668.
Li Liu, Gang Zheng, Guoqiang Fan, Hongguang Du, Jiajing Tan. Research Progress in Organic Reactions Involving 4-Acyl/Carbamoyl/Alkoxycarbonyl Substituted Hantzsch Esters[J]. Acta Chimica Sinica, 2023, 81(6): 657-668.
[1] |
Hantzsch, A. Ber. Dtsch. Chem. Ges. 1881, 14, 1637.
doi: 10.1002/cber.v14:2 |
[2] |
(a) Li, G. X.; Chen, R.; Wu, L.; Fu, Q. Q.; Zhang, X. M.; Tang, Z. Angew. Chem., Int. Ed. 2013, 52, 8432.
doi: 10.1002/anie.v52.32 |
(b) Li, G. X.; Wu, L.; Lv, G.; Li, H. X.; Fu, Q. Q.; Zhang, X. M.; Tang, Z. Chem. Commun. 2014, 50, 6246.
doi: 10.1039/C4CC01119H |
|
[3] |
(a) Wang, P.-Z.; Chen, J.-R.; Xiao, W.-J. Org. Biomol. Chem. 2019, 17, 6936.
doi: 10.1039/C9OB01289C |
(b) Ye, S. Q.; Wu, J. Acta Chim. Sinica 2019, 77, 814. (in Chinese)
doi: 10.6023/A19050170 |
|
(叶盛青, 吴劼, 化学学报, 2019, 77, 814.)
doi: 10.6023/A19050170 |
|
(c) Chen, Y. F.; Zhao, H.; Cheng, D. P.; Li, X. N.; Xu, X. L. Chin. J. Org. Chem. 2020, 40, 1297. (in Chinese)
doi: 10.6023/cjoc201911024 |
|
(陈跃峰, 赵赫, 程冬萍, 李小年, 许孝良, 有机化学, 2020, 40, 1297.)
doi: 10.6023/cjoc201911024 |
|
(d) Li, T. T.; Cheng, X. K.; Lu, J. M.; Wang, H. F.; Fang, Q.; Lu, Z. Chin. J. Chem. 2022, 40, 1033.
doi: 10.1002/cjoc.v40.9 |
|
(e) Huang, W. H.; Cheng, X. Synlett 2017, 28, 148.
doi: 10.1055/s-0036-1588129 |
|
[4] |
Nakajima, K.; Nojima, S.; Sakata, K.; Nishibayashi, Y. ChemCatChem 2016, 8, 1028.
doi: 10.1002/cctc.v8.6 |
[5] |
Chen, W. X.; Liu, Z.; Tian, J. Q.; Li, J.; Ma, J.; Cheng, X.; Li, G. G. J. Am. Chem. Soc. 2016, 138, 12312.
doi: 10.1021/jacs.6b06379 |
[6] |
(a) Phelan, J. P.; Lang, S. B.; Sim, J.; Berritt, S.; Peat, A. J.; Billings, K.; Fan, L.; Molander, G. A. J. Am. Chem. Soc. 2019, 141, 3723.
doi: 10.1021/jacs.9b00669 pmid: 27990318 |
(b) Buzzetti, L.; Prieto, A.; Roy, S. R.; Melchiorre, P. Angew. Chem., Int. Ed. 2017, 56, 15039.
doi: 10.1002/anie.201709571 pmid: 27990318 |
|
(c) Nakajima, K.; Nojima, S.; Nishibayashi, Y. Angew. Chem., Int. Ed. 2016, 55, 14106.
doi: 10.1002/anie.201606513 pmid: 27990318 |
|
(d) Gutiérrez-Bonet, Á.; Tellis, J. C.; Matsui, J. K.; Vara, B. A.; Molander, G. A. ACS Catal. 2016, 6, 8004.
pmid: 27990318 |
|
[7] |
(a) van Leeuwen, T.; Buzzetti, L.; Perego, L. A.; Melchiorre, P. Angew. Chem., Int. Ed. 2019, 58, 4953.
doi: 10.1002/anie.201814497 pmid: 30747467 |
(b) Verrier, C.; Alandini, N.; Pezzetta, C.; Moliterno, M.; Buzzetti, L.; Hepburn, H. B.; Vega- Peñaloza, A.; Silvi, M.; Melchiorre, P. ACS Catal. 2018, 8, 1062.
doi: 10.1021/acscatal.7b03788 pmid: 30747467 |
|
[8] |
Wu, Q.-Y.; Min, Q.-Q.; Ao, G.-Z.; Liu, F. Org. Biomol. Chem. 2018, 16, 6391.
doi: 10.1039/C8OB01641K |
[9] |
Gu, F. J.; Huang, W. H.; Liu, X.; Chen, W. X.; Cheng, X. Adv. Synth. Catal. 2018, 360, 925.
doi: 10.1002/adsc.v360.5 |
[10] |
de Assis, F. F.; Huang, X. Q.; Akiyama, M.; Pilli, R. A.; Meggers, E. J. Org. Chem. 2018, 83, 10922.
doi: 10.1021/acs.joc.8b01588 |
[11] |
Goti, G.; Bieszczad, B.; Vega-Peñaloza, A.; Melchiorre, P. Angew. Chem. Int. Ed. 2019, 58, 1213.
doi: 10.1002/anie.v58.4 |
[12] |
(a) Loh, Y. Y.; Nagao, K.; Hoover, A. J.; Hesk, D.; Rivera, N. R.; Colletti, S. L.; Davies, I. W.; MacMillan, D. W. C. Science 2017, 358, 1182.
doi: 10.1126/science.aap9674 pmid: 28762417 |
(b) Gan, Z.-Y.; Li, G.-Q.; Yang, X.-B.; Yan, Q.-L.; Xu, G.-Y.; Li, G.-Y.; Jiang, Y.-Y.; Yang, D.-S. Sci. China: Chem. 2020, 63, 1652.
doi: 10.1007/s11426-020-9811-6 pmid: 28762417 |
|
(c) Xie, J.; Jin, H. M.; Hashmi, A. S. K. Chem. Soc. Rev. 2017, 46, 5193.
doi: 10.1039/c7cs00339k pmid: 28762417 |
|
(d) Wu, X. T.; Zhao, F.; Ji, X. Z.; Huang, H. W. Chin. J. Org. Chem. 2022, 42, 4323. (in Chinese)
doi: 10.6023/cjoc202208036 pmid: 28762417 |
|
(巫晓婷, 赵峰, 姬小趁, 黄华文, 有机化学, 2022, 42, 4323.)
doi: 10.6023/cjoc202208036 pmid: 28762417 |
|
(e) Zhang, J.; Chen, Y. Y. Acta Chim. Sinica 2017, 75, 41.
doi: 10.6023/A16080416 pmid: 28762417 |
|
(张晶, 陈以昀, 化学学报, 2017, 75, 41.)
doi: 10.6023/A16080416 pmid: 28762417 |
|
(f) Gao, P. P.; Xiao, W. J.; Chen, J. R. Chin. J. Org. Chem. 2022, 42, 3923. (in Chinese)
doi: 10.6023/cjoc202208044 pmid: 28762417 |
|
(高盼盼, 肖文精, 陈加荣, 有机化学, 2022, 42, 3923.)
doi: 10.6023/cjoc202208044 pmid: 28762417 |
|
[13] |
Bieszczad, B.; Perego, L. A.; Melchiorre, P. Angew. Chem. Int. Ed. 2019, 58, 16878.
doi: 10.1002/anie.201910641 pmid: 31529788 |
[14] |
Buzzetti, L.; Crisenza, G. E. M.; Melchiorre, P. Angew. Chem., Int. Ed. 2019, 58, 3730.
doi: 10.1002/anie.201809984 pmid: 30339746 |
[15] |
Zhang, K.; Lu, L.-Q.; Jia, Y.; Wang, Y.; Lu, F.-D.; Pan, F. F.; Xiao, W.-J. Angew. Chem., Int. Ed. 2019, 58, 13375.
doi: 10.1002/anie.201907478 pmid: 31293048 |
[16] |
Zhao, X. X.; Li, B.; Xia, W. J. Org. Lett. 2020, 22, 1056.
doi: 10.1021/acs.orglett.9b04595 |
[17] |
Liu, L.; Jiang, P. X.; Liu, Y. G.; Du, H. G.; Tan, J. J. Org. Chem. Front. 2020, 7, 2278.
doi: 10.1039/D0QO00507J |
[18] |
Jiang, P. X.; Liu, L.; Tan, J. J.; Du, H. G. Org. Biomol. Chem. 2021, 19, 4487.
doi: 10.1039/D1OB00734C |
[19] |
(a) Lau, J. L.; Dunn, M. K. Bioorg. Med. Chem. 2018, 26, 2700.
doi: 10.1016/j.bmc.2017.06.052 |
(b) Guo, Y. F.; Zhuang, Z.; Liu, Y. G.; Yang, X.; Tan, C.; Zhao, X. W.; Tan, J. J. Coord. Chem. Rev. 2022, 463, 214525.
|
|
[20] |
Liu, L.; Deng, Z. K.; Xu, K.; Jiang, P. X.; Du, H. G.; Tan, J. J. Org. Lett. 2021, 23, 5299.
doi: 10.1021/acs.orglett.1c01448 |
[21] |
Byun, Y.; Moon, J.; An, W.; Mishra, N. K.; Kim, H. S.; Ghosh, P.; Kim, I. S. J. Org. Chem. 2021, 86, 12247.
doi: 10.1021/acs.joc.1c01558 |
[22] |
Zeng, F.-L.; Xie, K.-C.; Liu, Y.-T.; Wang, H.; Yin, P.-C.; Qu, L.-B.; Chen, X.-L.; Yu, B. Green Chem. 2022, 24, 1732.
doi: 10.1039/D1GC04218A |
[23] |
Pálvölgyi, Á. M.; Ehrschwendtner, F.; Schnürch, M.; Bica-Schröder, K. Org. Biomol. Chem. 2022, 20, 7245.
doi: 10.1039/d2ob01364a pmid: 36073152 |
[24] |
(a) Crisenza, G. E. M.; Mazzarella, D.; Melchiorre, P. J. Am. Chem. Soc. 2020, 142, 5461.
doi: 10.1021/jacs.0c01416 pmid: 32134647 |
(b) Hota, S, K.; Panda, S. P.; Das, S.; Mahapatra, S. K.; Roy, L.; Sarkar, S. D.; Murarka, S. J. Org. Chem. 2023, 88, 2543.
doi: 10.1021/acs.joc.2c03044 pmid: 32134647 |
|
(c) Choi, W.; Kim, M.; Lee, K.; Park, S.; Hong, S. Org. Lett. 2022, 24, 9452.
doi: 10.1021/acs.orglett.2c03882 pmid: 32134647 |
|
[25] |
Kim, I.; Park, S.; Hong, S. Org. Lett. 2020, 22, 8730.
doi: 10.1021/acs.orglett.0c03347 |
[26] |
Lipp, A.; Badir, S. O.; Dykstra, R.; Gutierrez, O.; Molander, G. A. Adv. Synth. Catal. 2021, 363, 3507.
doi: 10.1002/adsc.v363.14 |
[27] |
(a) Fan, R.; Tan, C.; Liu, Y. G.; Wei, Y.; Zhao, X. W.; Liu, X. Y.; Tan, J. J.; Yoshida, H. Chin. Chem. Lett. 2021, 32, 299.
doi: 10.1016/j.cclet.2020.06.003 |
(b) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
doi: 10.1039/B610213C |
|
(c) Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
doi: 10.1021/cr4002879 |
|
[28] |
(a) Wang, H. Q.; Xu, K. Chin. J. Org. Chem. 2022, 42, 1260. (in Chinese)
doi: 10.6023/cjoc202200021 |
(王会巧, 徐坤, 有机化学, 2022, 42, 1260.)
doi: 10.6023/cjoc202200021 |
|
(b) Wang, H. Q.; Xu, K. Chin. J. Org. Chem. 2023, 43, 789. (in Chinese)
doi: 10.6023/cjoc202300010 |
|
(王会巧, 徐坤, 有机化学, 2023, 43, 789.)
doi: 10.6023/cjoc202300010 |
|
[29] |
Luo, X. S.; Wang, P. Org. Lett. 2021, 23, 4960.
doi: 10.1021/acs.orglett.1c01243 |
[30] |
(a) Greenberg, A.; Breneman, C. M.; Liebman, J. F. The Amide Linkage: Structural Significance in Chemistry, Biochemistry and Materials Science, Wiley-VCH, Weinheim, 2003.
pmid: 26571338 |
(b) Roughley, S. D.; Jordan, A. M. J. Med. Chem. 2011, 54, 3451.
doi: 10.1021/jm200187y pmid: 26571338 |
|
(c) Brown, D. G.; Bostrçm, J. J. Med. Chem. 2016, 59, 4443.
doi: 10.1021/acs.jmedchem.5b01409 pmid: 26571338 |
|
[31] |
Alandini, N.; Buzzetti, L.; Favi, G.; Schulte, T.; Candish, L.; Collins, K. D.; Melchiorre, P. Angew. Chem., Int. Ed. 2020, 59, 5248.
doi: 10.1002/anie.v59.13 |
[32] |
Cardinale, L.; Konev, M. O.; von Wangelin, A. J. Chem.-Eur. J. 2020, 26, 8239.
doi: 10.1002/chem.202002410 pmid: 32428293 |
[33] |
Cardinale, L.; Schmotz, M. W. S.; Konev, M. O.; von Wangelin, A. J. Org. Lett. 2022, 24, 506.
doi: 10.1021/acs.orglett.1c03908 |
[34] |
Matsuo, B. T.; Oliveira, P. H. R.; Correia, J. T. M.; Paixão, M. W. Org. Lett. 2021, 23, 6775.
doi: 10.1021/acs.orglett.1c02353 |
[35] |
(a) Henninot, A.; Collins, J. C.; Nuss, J. M. J. Med. Chem. 2018, 61, 1382.
doi: 10.1021/acs.jmedchem.7b00318 pmid: 22917241 |
(b) Albericio, F.; Kruger, H. G. Future Med. Chem. 2012, 4, 1527.
doi: 10.4155/fmc.12.94 pmid: 22917241 |
|
(c) Peng, X.; Xu, K.; Zhang, Q.; Liu, L.; Tan, J. J. Trends in Chemistry 2022, 4, 643.
doi: 10.1016/j.trechm.2022.04.008 pmid: 22917241 |
|
[36] |
Wang, S. Y.; Zhou, Q. Q.; Zhang, X. H.; Wang, P. Angew. Chem., Int. Ed. 2022, 61, e202111388.
|
[37] |
Wei, Y. L.; Ben-zvi, B.; Diao, T. N. Angew. Chem. Int. Ed. 2021, 60, 9433.
doi: 10.1002/anie.v60.17 |
[38] |
Wei, Y. L.; Lam, J.; Diao, T. N. Chem. Sci. 2021, 12, 11414.
doi: 10.1039/D1SC03596G |
[1] | 李靖鹏, 杨棋, 张周, 曾贵云, 刘腾, 黄超. 多组分连续流动高选择性合成(Z)-N-乙烯基环N,O-缩醛衍生物[J]. 化学学报, 2022, 80(11): 1463-1468. |
[2] | 魏哲宇, 常亚林, 余焓, 韩生, 魏永革. Anderson型杂多酸作为催化剂在有机合成中的应用[J]. 化学学报, 2020, 78(8): 725-732. |
[3] | 董奎, 刘强, 吴骊珠. 放氢交叉偶联反应[J]. 化学学报, 2020, 78(4): 299-310. |
[4] | 叶盛青, 吴劼. 4-取代的汉斯酯(Hantzsch Esters)作为烷基化试剂参与的有机反应[J]. 化学学报, 2019, 77(9): 814-831. |
[5] | 叶文波, 晏子聪, 万常峰, 侯豪情, 汪志勇. 一种新的肉桂酸类化合物的脱羧/甲基化反应[J]. 化学学报, 2018, 76(2): 99-102. |
[6] | 周能能, 胥攀, 李伟鹏, 成义祥, 朱成建. 可见光催化的高炔丙醇经过1,4芳基迁移实现二氟烷基化反应[J]. 化学学报, 2017, 75(1): 60-65. |
[7] | 裴朋昆, 张凡, 易红, 雷爱文. 可见光促进的苄位Csp3-H键活化官能团化反应[J]. 化学学报, 2017, 75(1): 15-21. |
[8] | 陆庆全, 易红, 雷爱文. 自然氧化偶联及其在碳氢功能化反应中的应用[J]. 化学学报, 2015, 73(12): 1245-1249. |
[9] | 赵刘斌, 黄逸凡, 吴德印, 任斌. 对氨基苯硫酚分子的表面增强拉曼光谱及等离激元光催化反应[J]. 化学学报, 2014, 72(11): 1125-1138. |
[10] | 曹洁明,郑明波,陆鹏,邓少高,陈勇平,文凡,郭静,张防,陶杰. 利用还原性多糖合成银纳米粒子[J]. 化学学报, 2005, 63(16): 1541-1544. |
[11] | 戴立信,陈耀全. 创造更美好的生活和更清洁的环境: 化学的回顾与展望[J]. 化学学报, 2000, 58(1): 1-5. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||