化学学报 ›› 2023, Vol. 81 ›› Issue (8): 979-989.DOI: 10.6023/A23040133 上一篇 下一篇
所属专题: 庆祝《化学学报》创刊90周年合辑
综述
投稿日期:
2023-04-13
发布日期:
2023-09-14
作者简介:
侯威, 上海交通大学环境科学与工程学院2021级硕士研究生, 研究方向为电催化还原含氧酸根阴离子及其机制研究. |
么艳彩, 上海交通大学环境科学与工程学院长聘教轨副教授, 研究方向为电催化、单原子催化剂在环境、能源领域的应用. 以第一作者/通讯作者身份在Nat. Catal., J. Am. Chem. Soc., Angew. Chem., Int. Ed. (2篇)、Sci. Bull.等期刊发表多篇论文, 共3篇入选ESI高被引论文, 截至2023年4月发表论文累计被引用1200余次. 申请发明专利6项, 成果转化1项. 撰写英文专著1部. 曾获中科院“百篇优博论文”和中科院院长优秀奖. 先后获得国家自然科学基金、上海市科委面上项目、科技部重点研发计划项目子课题、博后站前特别资助及博士后面上资助等7项省部级项目资助. 现任Colloid and Surface Science编委. |
张礼知, 华中师范大学化学学院教授、上海交通大学特聘教授、博士生导师. 主要研究领域为污染控制化学、光催化及环境催化材料设计合成. 在Chem、Nat. Commun., J. Am. Chem. Soc., Angew. Chem., Int. Ed., Adv. Mater., Environ. Sci. Technol.等学术期刊发表论文360多篇, 其中29篇入选ESI高被引论文. 2011年获湖北省青年科技奖, 并入选湖北省自主创新“双百计划”, 2012年入选湖北省高端人才引领培养计划和湖北省高层次人才工程, 2014年起连续入选Elsevier发布“化学领域中国高被引学者榜单”, 2015年获教育部高等学校科学研究优秀成果奖(科学技术)自然科学二等奖(第一完成人), 2018年起连续入选Clarivate交叉领域全球高被引科学家榜单, 2019年获湖北省自然科学一等奖(第一完成人). |
基金资助:
Wei Hou, Yancai Yao(), Lizhi Zhang()
Received:
2023-04-13
Published:
2023-09-14
Contact:
*E-mail: yyancai@sjtu.edu.cn; zhanglizhi@sjtu.edu.cn
About author:
Supported by:
文章分享
含氧酸盐(硝酸盐、溴酸盐、高氯酸盐等)污染物大量排放造成的水体污染问题越来越严重. 含氧酸根离子具有持久性、难降解性、致畸性和致癌性, 对生态系统和人类健康造成极大威胁, 从而引起了全球的广泛关注. 电化学还原技术(electrochemical reduction, ER)可以利用电子或者活化水分子产生的强还原性物种——原子氢(H*), 实现水中有毒含氧酸根离子的高效、绿色、安全去除, 被认为是极具发展前景的水处理技术之一. 首先简要介绍了电化学还原去除水中含氧酸根离子的机理, 随后重点综述了电化学还原硝酸根、溴酸根、高氯酸根的研究进展, 讨论了不同环境中电化学还原去除含氧酸根离子的反应路径, 分析了催化剂结构和种类等对电化学还原含氧酸根离子的影响. 最后, 探讨和展望了电化学还原去除水中含氧酸根离子面临的挑战.
侯威, 么艳彩, 张礼知. 电化学还原去除水中含氧酸根离子研究进展★[J]. 化学学报, 2023, 81(8): 979-989.
Wei Hou, Yancai Yao, Lizhi Zhang. Advances in Electrochemical Reductive Removal of Oxyanions in Water★[J]. Acta Chimica Sinica, 2023, 81(8): 979-989.
电极材料 | 最佳电位/电流密度 | 活性(performance) | 能耗(Energy consumption) | 参考文献 |
---|---|---|---|---|
Bi1Pd | -0.6 V (vs. RHE) | 产氨速率为33.8 mg•h-1•cm-2, FE约为100% | N/A | [ |
Pd-Cu/γAl2O3 | 10 mA/cm2 | 氮气的选择性约为80.37% | N/A | [ |
Irnanotube | 0.06 V (vs. RHE) | 产氨速率为921 μg•h-1•mgcat-1, FE为84.7% | N/A | [ |
Strained Ru Nanoclusters | -0.20 V (vs. RHE) | 产氨速率为5.56 mol•gcat-1•h-1, FE为100% | N/A | [ |
Cu Nanosheets | -0.15 V (vs. RHE) | 产氨速率为390.1 g•mgCu-1•h-1, FE为99.7% | N/A | [ |
Cu(I)-N3C1 | -0.64 V (vs. RHE) | 硝酸盐去除率94.8% | 0.149 kWh/g-N | [ |
Fe single atom catalyst | -0.66 V (vs. RHE) | 产氨速率为0.46 mmol•h-1•cm-2, FE为75% | N/A | [ |
Co-CuOx | -1.1 V (vs. Ag/AgCl) | 硝酸盐去除率95.2%, N2选择性为96.0% | 0.60 kWh•m-3 | [ |
Co Nanoarray | -0.24 V (vs. RHE) | 产氨速率为10.4 mmol•h-1•cm-2, FE≥96% | N/A | [ |
电极材料 | 最佳电位/电流密度 | 活性(performance) | 能耗(Energy consumption) | 参考文献 |
---|---|---|---|---|
Bi1Pd | -0.6 V (vs. RHE) | 产氨速率为33.8 mg•h-1•cm-2, FE约为100% | N/A | [ |
Pd-Cu/γAl2O3 | 10 mA/cm2 | 氮气的选择性约为80.37% | N/A | [ |
Irnanotube | 0.06 V (vs. RHE) | 产氨速率为921 μg•h-1•mgcat-1, FE为84.7% | N/A | [ |
Strained Ru Nanoclusters | -0.20 V (vs. RHE) | 产氨速率为5.56 mol•gcat-1•h-1, FE为100% | N/A | [ |
Cu Nanosheets | -0.15 V (vs. RHE) | 产氨速率为390.1 g•mgCu-1•h-1, FE为99.7% | N/A | [ |
Cu(I)-N3C1 | -0.64 V (vs. RHE) | 硝酸盐去除率94.8% | 0.149 kWh/g-N | [ |
Fe single atom catalyst | -0.66 V (vs. RHE) | 产氨速率为0.46 mmol•h-1•cm-2, FE为75% | N/A | [ |
Co-CuOx | -1.1 V (vs. Ag/AgCl) | 硝酸盐去除率95.2%, N2选择性为96.0% | 0.60 kWh•m-3 | [ |
Co Nanoarray | -0.24 V (vs. RHE) | 产氨速率为10.4 mmol•h-1•cm-2, FE≥96% | N/A | [ |
电极材料 | 电化学活性/ (mmol•gcat-1•h-1) | 能耗/ (kWh•mmol-1) | 参考文献 |
---|---|---|---|
nZVI/ACF | 0.7×10-3 | 6.42 | [ |
Pd/rGO/CFP | 0.31 | N/A | [ |
Pd/NLSBC-800 | 2.4×10-3 | 1.998 | [ |
Pd-In/Al2O3 | 1.14×10-3 | N/A | [ |
RuCu/CNT | 15.12 | N/A | [ |
NG-Cu foam | N/A | N/A | [ |
电极材料 | 电化学活性/ (mmol•gcat-1•h-1) | 能耗/ (kWh•mmol-1) | 参考文献 |
---|---|---|---|
nZVI/ACF | 0.7×10-3 | 6.42 | [ |
Pd/rGO/CFP | 0.31 | N/A | [ |
Pd/NLSBC-800 | 2.4×10-3 | 1.998 | [ |
Pd-In/Al2O3 | 1.14×10-3 | N/A | [ |
RuCu/CNT | 15.12 | N/A | [ |
NG-Cu foam | N/A | N/A | [ |
电极材料 | ClO4-去除效率 | 能耗/(kWh•mmol-1) | 参考文献 |
---|---|---|---|
Ni | N/A | N/A | [ |
Ti | N/A | N/A | [ |
Rh | N/A | N/A | [ |
Pd/Pt-ACF | 53% | 17.9 | [ |
Pd/Pt-NACF | 81% | 9.9 | [ |
Rh/Cu | 78% | N/A | [ |
Rh/Ru | 60% | N/A | [ |
电极材料 | ClO4-去除效率 | 能耗/(kWh•mmol-1) | 参考文献 |
---|---|---|---|
Ni | N/A | N/A | [ |
Ti | N/A | N/A | [ |
Rh | N/A | N/A | [ |
Pd/Pt-ACF | 53% | 17.9 | [ |
Pd/Pt-NACF | 81% | 9.9 | [ |
Rh/Cu | 78% | N/A | [ |
Rh/Ru | 60% | N/A | [ |
[1] |
Howarth A. J.; Liu Y.; Hupp J. T.; Farha O. K. CrystEngComm 2015, 17, 7245.
doi: 10.1039/C5CE01428J |
[2] |
Chaplin B. P.; Reinhard M.; Schneider W. F.; Schuth C.; Shapley J. R.; Strathmann T. J.; Werth C. J. Environ. Sci. Technol. 2012, 46, 3655.
doi: 10.1021/es204087q |
[3] |
Fan K.; Xie W.; Li J.; Sun Y.; Xu P.; Tang Y.; Li Z.; Shao M. Nat. Commun. 2022, 13, 7958.
doi: 10.1038/s41467-022-35664-w |
[4] |
Heck K. N.; Garcia-Segura S.; Westerhoff P.; Wong M. S. Acc. Chem. Res. 2019, 52, 906.
doi: 10.1021/acs.accounts.8b00642 |
[5] |
Xiao Q.; Yu S.; Li L.; Zhang Y.; Yi P. Water Res. 2019, 150, 310.
doi: 10.1016/j.watres.2018.11.067 |
[6] |
Yao F.; Zhong Y.; Yang Q.; Wang D.; Chen F.; Zhao J.; Xie T.; Jiang C.; An H.; Zeng G.; Li X. J. Hazard. Mater. 2017, 323, 602.
doi: 10.1016/j.jhazmat.2016.08.052 |
[7] |
Shen J.; Yao F. B.; Chen S. J.; Yang L. Chin. J. Environ. Eng. 2022, 16, 12. (in Chinese)
|
( 申剑, 姚福兵, 陈圣杰, 杨麒, 环境工程学报, 2022, 16, 12.)
|
|
[8] |
Chen X.; Huo X.; Liu J.; Wang Y.; Werth C. J.; Strathmann T. J. Chem. Eng. J. 2017, 313, 745.
doi: 10.1016/j.cej.2016.12.058 |
[9] |
Montes-Hernandez G.; Concha-Lozano N.; Renard F.; Quirico E. J. Hazard. Mater. 2009, 166, 788.
doi: 10.1016/j.jhazmat.2008.11.120 |
[10] |
Yin Y. B.; Guo S.; Heck K. N.; Clark C. A.; Conrad C. L.; Wong M. S. ACS Sustainable Chem. Eng. 2018, 6, 11160.
doi: 10.1021/acssuschemeng.8b02070 |
[11] |
Caswell T.; Dlamini M. W.; Miedziak P. J.; Pattisson S.; Davies P. R.; Taylor S. H.; Hutchings G. J. Catal. Sci. Technol. 2020, 10, 2082.
doi: 10.1039/C9CY02473E |
[12] |
Yao F.; Yang Q.; Zhong Y.; Shu X.; Chen F.; Sun J.; Ma Y.; Fu Z.; Wang D.; Li X. Water Res. 2019, 157, 191.
doi: 10.1016/j.watres.2019.03.078 |
[13] |
Alsewaileh A. S.; Usman A. R.; Al-Wabel M. I. J. Environ. Manage. 2019, 237, 289.
doi: 10.1016/j.jenvman.2019.02.045 |
[14] |
Matos C. T.; Fortunato R.; Velizarov S.; Reis M. A.; Crespo J. G. Water Res. 2008, 42, 1785.
doi: 10.1016/j.watres.2007.11.006 |
[15] |
Sadyrbaeva T. Z. Chem. Eng. Process. 2016, 99, 183.
doi: 10.1016/j.cep.2015.07.011 |
[16] |
Viglašová E.; Galamboš M.; Danková Z.; Krivosudský L.; Lengauer C. L.; Hood-Nowotny R.; Soja G.; Rompel A.; Matík M.; Briančin J. Waste Manage. 2018, 79, 385.
doi: 10.1016/j.wasman.2018.08.005 |
[17] |
Barrabés N.; Sá J. Appl. Catal., B 2011, 104, 1.
|
[18] |
Liu G.; You S.; Zhang Y.; Huang H.; Spanjers H. J. Colloid Interface Sci. 2019, 553, 666.
doi: 10.1016/j.jcis.2019.06.072 |
[19] |
Sheldon R. A. Angew. Chem., Int. Ed. 2020, 60, 538.
doi: 10.1002/anie.v60.2 |
[20] |
Lei C.; Liang F.; Li J.; Chen W.; Huang B. Chem. Eng. J. 2019, 358, 1054.
doi: 10.1016/j.cej.2018.10.105 |
[21] |
Xu B.; Chen Z.; Zhang G. Environ. Sci. Technol. 2022, 56, 614.
doi: 10.1021/acs.est.1c06091 |
[22] |
Fan Z.; Zhao H.; Wang K.; Ran W.; Sun J. F.; Liu J.; Liu R. Environ. Sci. Technol. 2023, 57, 1499.
doi: 10.1021/acs.est.2c07462 |
[23] |
Yao F.; Yang Q.; Sun J.; Chen F.; Zhong Y.; Yin H.; He L.; Tao Z.; Pi Z.; Wang D.; Li X. Chem. Eng. J. 2020, 389, 123588.
doi: 10.1016/j.cej.2019.123588 |
[24] |
Zhang H. Environ. Sci. Pollut. Res. Int. 2019, 26, 10457.
doi: 10.1007/s11356-019-04533-3 |
[25] |
Wu T.; Hu J.; Wan Y.; Qu X.; Zheng S. J. Hazard. Mater. 2022, 438, 129551.
doi: 10.1016/j.jhazmat.2022.129551 |
[26] |
Liu C.; Zhang G.; Li Y.; Qu J.; Liu H. Small 2018, 14, 1800421.
|
[27] |
Li Y.; Ren L.; Wang T.; Wu Z.; Wang Z. J. Hazard. Mater. 2023, 446, 130688.
doi: 10.1016/j.jhazmat.2022.130688 |
[28] |
Guo Y.; Li Y.; Wang Z. Water Res. 2023, 234, 119810.
doi: 10.1016/j.watres.2023.119810 |
[29] |
Canfield D. E.; Glazer A. N.; Falkowski P. G. Science 2010, 330, 192.
doi: 10.1126/science.1186120 |
[30] |
Zhu T.; Chen Q.; Liao P.; Duan W.; Liang S.; Yan Z.; Feng C. Small 2020, 16, 2004526.
|
[31] |
Lim J.; Chen Y.; Cullen D. A.; Lee S. W.; Senftle T. P.; Hatzell M. C. ACS Catal. 2022, 13, 87.
doi: 10.1021/acscatal.2c04841 |
[32] |
Sun T.; Li Y. B.; Zhang R. S.; Mao R.; Wang K. F.; Liu X. B.; Guo C. H.; Zhao X. Chin. J. Environ. Eng. 2021, 41, 8. (in Chinese)
|
( 孙拓, 李一兵, 张汝山, 冒冉, 王开丰, 刘新兵, 郭聪慧, 赵旭, 环境科学学报, 2021, 41, 8.)
|
|
[33] |
Wang Y.; Wang C.; Li M.; Yu Y.; Zhang B. Chem. Soc. Rev. 2021, 50, 6720.
doi: 10.1039/D1CS00116G |
[34] |
Theerthagiri J.; Park J.; Das H. T.; Rahamathulla N.; Cardoso E. S. F.; Murthy A. P.; Maia G.; Vo D. V. N.; Choi M. Y. Environ. Chem. Lett. 2022, 20, 2929.
doi: 10.1007/s10311-022-01469-y |
[35] |
Yao Y.; Zhang L. Sci. Bull. 2022, 67, 1194.
doi: 10.1016/j.scib.2022.05.004 |
[36] |
Min B.; Gao Q.; Yan Z.; Han X.; Hosmer K.; Campbell A.; Zhu H. Ind. Eng. Chem. Res. 2021, 60, 14635.
doi: 10.1021/acs.iecr.1c03072 |
[37] |
Groot M.; Koper M. J. Electroanal. Chem. 2004, 562, 81.
doi: 10.1016/j.jelechem.2003.08.011 |
[38] |
Sicsic D.; Balbaud-Clrier F.; Tribollet B. Eur. J. Inorg. Chem. 2014, 17, 6174.
|
[39] |
Xu H.; Ma Y.; Chen J.; Zhang W. X.; Yang J. Chem. Soc. Rev. 2022, 51, 2710.
doi: 10.1039/D1CS00857A |
[40] |
Zeng Y.; Priest C.; Wang G.; Wu G. Small Methods 2020, 4, 2000672.
|
[41] |
Zhang X.; Wang Y.; Liu C.; Yu Y.; Lu S.; Zhang B. Chem. Eng. J. 2021, 403, 126269.
doi: 10.1016/j.cej.2020.126269 |
[42] |
Bae S. E.; Stewart K. L.; Gewirth A. A. J. Am. Chem. Soc. 2007, 129, 10171.
doi: 10.1021/ja071330n |
[43] |
Meng S.; Ling Y.; Yang M.; Zhao X.; Osman A. I.; Al-Muhtaseb A. H.; Rooney D. W.; Yap P.-S. J. Environ. Chem. Eng. 2023, 11, 109418.
doi: 10.1016/j.jece.2023.109418 |
[44] |
Garcia-Segura S.; Lanzarini-Lopes M.; Hristovski K.; Westerhoff P. Appl. Catal., B 2018, 236, 546.
doi: 10.1016/j.apcatb.2018.05.041 |
[45] |
Wang Z.; Young S. D.; Goldsmith B. R.; Singh N. J. Catal. 2021, 395, 143.
doi: 10.1016/j.jcat.2020.12.031 |
[46] |
Katsounaros I.; Kyriacou G. Electrochim. Acta 2008, 53, 5477.
doi: 10.1016/j.electacta.2008.03.018 |
[47] |
Vooys A.; Beltramo G. L.; Riet B. V.; Veen J.; Koper M. Electrochim. Acta 2004, 49, 1307.
doi: 10.1016/j.electacta.2003.07.020 |
[48] |
Yoshioka T.; Iwase K.; Nakanishi S.; Hashimoto K.; Kamiya K. J. Phys. Chem. C 2016, 120, 15729.
doi: 10.1021/acs.jpcc.5b10962 |
[49] |
Duca M.; Cucarella M. O.; Rodriguez P.; Koper M. J. Am. Chem. Soc. 2010, 132, 18042.
doi: 10.1021/ja1092503 |
[50] |
Li J.; Zhan G.; Yang J.; Quan F.; Mao C.; Liu Y.; Wang B.; Lei F.; Li L.; Chan A. W. M.; Xu L.; Shi Y.; Du Y.; Hao W.; Wong P. K.; Wang J.; Dou S. X.; Zhang L.; Yu J. C. J. Am. Chem. Soc. 2020, 142, 7036.
doi: 10.1021/jacs.0c00418 |
[51] |
Li T.; Tang C.; Guo H.; Wu H.; Duan C.; Wang H.; Zhang F.; Cao Y.; Yang G.; Zhou Y. ACS Appl. Mater. Interfaces 2022, 14, 49765.
doi: 10.1021/acsami.2c14215 |
[52] |
Perez-Gallent E.; Figueiredo M.; Katsounaros I.; Koper; M. T. Electrochim. Acta 2017, 227, 77.
doi: 10.1016/j.electacta.2016.12.147 |
[53] |
Xu Y.-T.; Xie M.-Y.; Zhong H.; Cao Y. ACS Catal. 2022, 12, 8698.
doi: 10.1021/acscatal.2c02033 |
[54] |
Wang Y.; Li H.; Zhou W.; Zhang X.; Zhang B.; Yu Y. Angew. Chem., Int. Ed. 2022, 61, e202202604.
|
[55] |
Aristizábal A.; Contreras S.; Barrabés N.; Llorca J.; Tichit D.; Medina F. Appl. Catal., B 2011, 110, 58.
doi: 10.1016/j.apcatb.2011.08.024 |
[56] |
Yao Y.; Zhao L.; Dai J.; Wang J.; Fang C.; Zhan G.; Zheng Q.; Hou W.; Zhang L. Angew. Chem., Int. Ed. 2022, 61, e202208215.
|
[57] |
Yin H.; Peng Y.; Li J. Environ. Sci. Technol. 2023, 57, 3134.
doi: 10.1021/acs.est.2c07968 |
[58] |
Liu H.; Lang X.; Zhu C.; Timoshenko J.; Bai L.; Guijarro N.; Yin H.; Peng Y.; Li J.; Liu Z. Angew. Chem., Int. Ed. 2022, 61, e202202556.
|
[59] |
Dima G. E.; Vooys A. D.; Koper M. J. Electroanal. Chem. 2003, 554, 15.
|
[60] |
Guo H.; Li M.; Yang Y.; Luo R.; Liu W.; Zhang F.; Tang C.; Yang G.; Zhou Y. Small 2023, 19, 2207743.
|
[61] |
Jr D. B.; Gewirth A. A. Nano Energy 2016, 29, 457.
doi: 10.1016/j.nanoen.2016.06.024 |
[62] |
Lim J.; Liu C.-Y.; Park J.; Liu Y.-H.; Senftle T. P.; Lee S. W.; Hatzell M. C. ACS Catal. 2021, 11, 7568.
doi: 10.1021/acscatal.1c01413 |
[63] |
Chen K.; Ma Z.; Li X.; Kang J.; Ma D.; Chu K. Adv. Funct. Mater. 2023, 33, 2209890.
|
[64] |
Zhang Z.; Xu Y.; Shi W.; Wang W.; Zhang R.; Bao X.; Zhang B.; Li L.; Cui F. Chem. Eng. J. 2016, 290, 201.
doi: 10.1016/j.cej.2016.01.063 |
[65] |
Zhu J. Y.; Xue Q.; Xue Y. Y.; Ding Y.; Li F. M.; Jin P.; Chen P.; Chen Y. ACS Appl. Mater. Interfaces 2020, 12, 14064.
doi: 10.1021/acsami.0c01937 |
[66] |
Fu X.; Zhao X.; Hu X.; He K.; Yu Y.; Li T.; Tu Q.; Qian X.; Yue Q.; Wasielewski M. R.; Kang Y. Appl. Mater. Today 2020, 19, 100620.
|
[67] |
Xue Y.; Yu Q.; Ma Q.; Chen Y.; Zhang C.; Teng W.; Fan J.; Zhang W. X. Environ. Sci. Technol. 2022, 56, 14797.
doi: 10.1021/acs.est.2c04456 |
[68] |
Wu Z. Y.; Karamad M.; Yong X.; Huang Q.; Cullen D. A.; Zhu P.; Xia C.; Xiao Q.; Shakouri M.; Chen F. Y.; Kim J. Y. T.; Xia Y.; Heck K.; Hu Y.; Wong M. S.; Li Q.; Gates I.; Siahrostami S.; Wang H. Nat. Commun. 2021, 12, 2870.
doi: 10.1038/s41467-021-23115-x |
[69] |
Li Y.; Ma J.; Wu Z. Environ. Sci. Technol. 2022, 56, 8673.
doi: 10.1021/acs.est.1c05841 |
[70] |
Deng X.; Yang Y.; Wang L.; Fu X.; Luo J. Adv. Sci. 2021, 8, 2004523.
|
[71] |
Zheng W. X.; Zhu L. Y.; Yan Z.; Lin Z. C.; Lei Z. C.; Zhang Y. F.; Xu H. L.; Dang Z.; Wei C. H.; Feng C. H. Environ. Sci. Technol. 2021, 55, 13231.
|
[72] |
Soltermann F.; Abegglen C.; Tschui M.; Stahel S.; Gunten U. V. Water Res. 2017, 116, 76.
doi: 10.1016/j.watres.2017.02.026 |
[73] |
Li A. Z.; Mao R.; Zhao X. Chin. Sci. China: Chem. 2014, 10, 7. (in Chinese)
|
( 李昂臻, 冒冉, 赵旭, 中国科学: 化学, 2014, 10, 7.)
|
|
[74] |
Richardson S. D.; Plewa M. J.; Wagner E. D.; Schoeny R.; Demarini D. M. Mutat. Res.,Rev. Mutat. Res. 2007, 636, 178.
doi: 10.1016/j.mrrev.2007.09.001 |
[75] |
Lu Z.; Yang Q.; Hu T. Chem. Eng. J. 2022, 446, 137356.
doi: 10.1016/j.cej.2022.137356 |
[76] |
Liang D.; Qin L.; Cui H.; Tang R.; Hui X.; Xie X.; Zhai J. Electrochim. Acta 2010, 55, 8471.
doi: 10.1016/j.electacta.2010.07.062 |
[77] |
Zhao X.; Liu H.; Li A.; Shen Y.; Qu J. Electrochim. Acta 2012, 62, 181.
doi: 10.1016/j.electacta.2011.12.013 |
[78] |
Townshend A. Anal. Chim. Acta 1987, 198, 333.
doi: 10.1016/S0003-2670(00)85044-8 |
[79] |
Mao R.; Yan L.; Zhao X.; Djellabi R.; Wang K.; Hu K.; Zhu H. Chem. Eng. J. 2022, 429, 132139.
doi: 10.1016/j.cej.2021.132139 |
[80] |
Kishimoto N.; Matsuda N. Environ. Sci. Technol. 2009, 43, 2054.
doi: 10.1021/es803144w |
[81] |
Zhou D.; Ding L.; Cui H.; An H.; Zhai J.; Li Q. Chem. Eng. J. 2012, 200-202, 32.
|
[82] |
Cuentas-Gallegos A. K.; Miranda-Hernández M.; Vargas-Ocampo A. Electrochim. Acta 2009, 54, 4378.
doi: 10.1016/j.electacta.2009.03.010 |
[83] |
Mao R.; Zhao X.; Lan H.; Liu H.; Qu J. Appl. Catal., B 2014, 160-161, 179.
|
[84] |
Yao F.; Yang Q.; Yan M.; Li X.; Li X. J. Hazard. Mater. 2019, 386, 121651.
doi: 10.1016/j.jhazmat.2019.121651 |
[85] |
Lan H.; Mao R.; Tong Y.; Liu Y.; Liu H.; An X.; Liu R. Environ. Sci. Technol. 2016, 50, 11872.
doi: 10.1021/acs.est.6b02822 |
[86] |
Conner W. C.; Falconer J. L. Chem. Rev. 1995, 95, 123.
|
[87] |
Nutt M.; Hughes J.; Wong M. Environ. Sci. Technol. 2005, 39, 1346.
doi: 10.1021/es048560b |
[88] |
Figueras C. F. J. Mol. Catal. A: Chem. 2001, 173, 117.
doi: 10.1016/S1381-1169(01)00148-0 |
[89] |
Witonska I. A.; Walock M. J.; Dziugan P.; Karski S.; Stanishevsky A. V. Appl. Surf. Sci. 2013, 273, 330.
doi: 10.1016/j.apsusc.2013.02.039 |
[90] |
Zhou Y.; Zhang G.; Ji Q.; Zhang W.; Zhang J.; Liu H.; Qu J. Environ. Sci. Technol. 2019, 53, 11383.
doi: 10.1021/acs.est.9b03111 |
[91] |
Yao Q.; Zhou X.; Xiao S.; Chen J.; Zhang Y. Water Res. 2019, 165, 114930.
doi: 10.1016/j.watres.2019.114930 |
[92] |
Gao J. N.; Jiang B.; Ni C. C.; Qi Y. F.; Zhang Y. Q.; Oturan N.; Oturan M. A. Appl. Catal., B 2019, 254, 391.
doi: 10.1016/j.apcatb.2019.05.016 |
[93] |
Cao F.; Jaunat J.; Sturchio N.; Cances B.; Morvan X.; Devos A.; Barbin V.; Ollivier P. Sci. Total Environ. 2019, 661, 737.
doi: 10.1016/j.scitotenv.2019.01.107 |
[94] |
Li H.; Zhou L.; Lin H.; Zhang W.; Xia S. Sci. Total Environ. 2019, 694, 133564.
doi: 10.1016/j.scitotenv.2019.07.370 |
[95] |
Fang Q. L.; Chen B. L. Chin. J. Environ. Eng. 2011, 31, 1569. (in Chinese)
|
( 方齐乐, 陈宝梁, 环境科学学报, 2011, 31, 1569.)
|
|
[96] |
Ren C.; Yang P.; Sun J.; Bi E. Y.; Gao J.; Palmer J.; Zhu M.; Wu Y.; Liu J. J. Am. Chem. Soc. 2021, 143, 7891.
doi: 10.1021/jacs.1c00595 |
[97] |
Scheytt T. J.; Freywald J.; Ptacek C. J. Grundwasser 2011, 16, 37.
doi: 10.1007/s00767-010-0159-0 |
[98] |
Greer M. A.; Goodman G.; Pleus R. C.; Greer S. E. Environ. Health Perspect. 2005, 113, A 732.
|
[99] |
Cartier T.; Baert A.; Cabillic P. J.; Casellas C.; Joyeux M. Environnement, Risques & Sante 2012, 11, 316.
|
[100] |
Yang Q.; Yao F.; Zhong Y.; Wang D.; Chen F.; Sun J.; Hua S.; Li S.; Li X.; Zeng G. Chem. Eng. J. 2016, 306, 1081.
doi: 10.1016/j.cej.2016.08.041 |
[101] |
Wasberg M.; Horányi G. J. Electroanal. Chem. 1995, 381, 151.
doi: 10.1016/0022-0728(94)03667-R |
[102] |
Láng G. G.; Horányi G. J. Electroanal. Chem. 2003, 552, 197.
doi: 10.1016/S0022-0728(02)01302-5 |
[103] |
Láng G. G.; Sas N. S.; Ujvári M.; Horányi G. Electrochim. Acta 2008, 53, 7436.
doi: 10.1016/j.electacta.2007.12.007 |
[104] |
Mahmudov R.; Shu Y.; Rykov S.; Chen J.; Huang C. P. Appl. Catal., B 2008, 81, 78.
doi: 10.1016/j.apcatb.2007.11.039 |
[105] |
Rusanova M. Y.; PolasKova P.; Muzika M.; Fawcett W. R. Electrochim. Acta 2006, 51, 3097.
doi: 10.1016/j.electacta.2005.08.044 |
[106] |
Wang D.; Huang C.; Chen J.; Lin H.; Shah S. Sep. Purif. Technol. 2007, 58, 129.
doi: 10.1016/j.seppur.2007.07.028 |
[107] |
Wang D. M.; Lin H. Y.; Shah S. I.; Ni C. Y.; Huang C. P. Sep. Purif. Technol. 2009, 67, 127.
doi: 10.1016/j.seppur.2009.03.008 |
[108] |
Hurley K. D.; Shapley J. R. Environ. Sci. Technol. 2007, 41, 2044.
doi: 10.1021/es0624218 |
[109] |
Wang P.-Y.; Chen C.-L.; Huang C. P. J. Environ. Eng. 2019, 145, 04019046.
|
[110] |
Xu B.; Zhai Y.; Chen W.; Wang B.; Wang T.; Zhang C.; Li C.; Zeng G. Chem. Eng. J. 2018, 348, 765.
doi: 10.1016/j.cej.2018.05.052 |
[111] |
Wang D. M.; Lin H. Y.; Shah S. I.; Ni C. Y.; Huang C. P. Sep. Purif. Technol. 2009, 67, 127.
doi: 10.1016/j.seppur.2009.03.008 |
[112] |
Láng G. G.; Sas N. S.; Ujvári M.; Horányi G. Electrochim. Acta 2008, 53, 7436.
doi: 10.1016/j.electacta.2007.12.007 |
[113] |
Kim Y.-N.; Lee Y.-C.; Choi M. Carbon 2013, 65, 315.
doi: 10.1016/j.carbon.2013.08.031 |
[114] |
Ge L.; Rabiee H.; Li M. Chem 2022, 8, 663.
doi: 10.1016/j.chempr.2021.12.002 |
[115] |
Ma J.; Wei W.; Qin G.; Xiao T.; Tang W.; Zhao S.; Jiang L.; Liu S. Water Res. 2022, 208, 117862.
doi: 10.1016/j.watres.2021.117862 |
[116] |
Misal S. N.; Lin M. H.; Mehraeen S.; Chaplin B. P. J. Hazard. Mater. 2022, 384, 121420.
doi: 10.1016/j.jhazmat.2019.121420 |
[117] |
Almassi S.; Ren C.; Liu J.; Chaplin B. P. Environ. Sci. Technol. 2022, 56, 3267.
doi: 10.1021/acs.est.1c08220 |
[118] |
Seibert D.; Zorzo C. F.; Borba F. H.; De Souza R. M.; Quesada H. B.; Bergamasco R.; Baptista A. T.; Inticher J. J. Sci. Total Environ. 2020, 748, 141527.
doi: 10.1016/j.scitotenv.2020.141527 |
[119] |
Zhang Y.; Guo L.; Tao L.; Lu Y.; Wang S. Small Methods 2018, 3, 1800406.
|
[120] |
Hu X.; Hu G.; Li X.; Zhao X.; Zhou Y.; Hu J.; Zhang H. Appl. Surf. Sci. 2022, 584, 152556.
doi: 10.1016/j.apsusc.2022.152556 |
[121] |
Meng N.; Huang Y.; Liu Y.; Yu Y.; Zhang B. Cell Rep. Phys. Sci. 2021, 2, 100378.
|
[122] |
Qin J.; Liu N.; Chen L.; Wu K.; Zhao Q.; Liu B.; Ye Z. ACS Sustainable Chem. Eng. 2022, 10, 15869.
doi: 10.1021/acssuschemeng.2c05110 |
[123] |
Pei S.; Shi H.; Zhang J.; Wang S.; Ren N.; You S. J. Hazard. Mater. 2021, 419, 126434.
doi: 10.1016/j.jhazmat.2021.126434 |
[1] | 张慧颖, 于淑艳, 李从举. 高分子聚合物基碳纳米膜的电催化降解污水性能及机理[J]. 化学学报, 2023, 81(4): 420-430. |
[2] | 蒋成浩, 冯霄, 王博. 共价有机框架膜的制备及其在海水淡化和水处理领域的研究进展[J]. 化学学报, 2020, 78(6): 466-477. |
[3] | 赵微微, 王毅琳. 表面活性剂用于废水处理研究的新进展[J]. 化学学报, 2019, 77(8): 717-728. |
[4] | 路丹花, 杜颖颖, 赵晓慧, 张娟, 张树永. 溶剂热电化学还原氯仿制备类金刚石碳膜的研究[J]. 化学学报, 2010, 68(22): 2259-2263. |
[5] | 郭玉良, 郑翔龙, 胡熙恩, 朱泉. 铂和铜电极上4-硝基吡啶-1-氧化物还原过程研究[J]. 化学学报, 2007, 65(23): 2680-2686. |
[6] | 张芳,李光明,盛怡,胡惠康,王华. 电催化氧化法处理苯酚废水的Mn-Sn-Sb/γ-Al2O3粒子电极研制[J]. 化学学报, 2006, 64(3): 235-239. |
[7] | 王建兵, 祝万鹏, 杨少霞, 周云瑞. ZrxCe1-xO2催化剂催化湿式氧化乙酸的活性研究[J]. 化学学报, 2006, 64(15): 1537-1542. |
[8] | 陈金媛,彭图治,肖燕风. 高效二氧化钛/膨润土复合材料的制备及光催化性能研究[J]. 化学学报, 2003, 61(8): 1311-1315. |
[9] | 宋秀芹,张雪红,王新,汪兰霞,张萍,魏雨. 纳米结构TiO2/SiO2的逐层自组装[J]. 化学学报, 2003, 61(5): 780-784. |
[10] | 包昌年,李德文,夏泉,金英花. 磷酸三丁酯萃取苯酚的研究[J]. 化学学报, 1988, 46(2): 184-186. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||