化学学报 ›› 2023, Vol. 81 ›› Issue (6): 646-656.DOI: 10.6023/A23040140 上一篇    下一篇

所属专题: 庆祝《化学学报》创刊90周年合辑

综述

镍催化不对称氢化构建手性C—X键的研究进展

蔡新红, 陈建中*(), 张万斌*()   

  1. 上海交通大学化学化工学院 变革性分子前沿科学中心 上海市手性药物分子工程重点实验室 上海 200240
  • 投稿日期:2023-04-17 发布日期:2023-05-15
  • 作者简介:

    蔡新红, 上海交通大学在读博士(导师: 张万斌教授), 主要研究方向为丰产金属催化的不对称氢化反应.

    陈建中, 上海交通大学化学化工学院副研究员. 本科毕业于浙江工业大学; 硕士毕业于华东理工大学(导师: 赵敏副教授); 2013年博士毕业于上海交通大学(导师: 张万斌教授), 同年在本校从事博士后研究(导师: 颜德岳院士). 主要从事不对称催化研究, 药物和香料等合成工艺研究等.

    张万斌, 上海交通大学化学化工学院讲席教授; 1997年在日本大阪大学取得博士学位; 1997年至2001年在日本大阪大学工学部应用化学系任助理教授; 2001年至2003年在日本三菱化学株式会社横滨综合研究所任主任研究员; 2003年至今任上海交通大学教授/特聘教授/讲席教授; 2017年起担任上海市手性药物分子工程重点实验室主任. 主要研究兴趣包括有机金属化学、不对称催化和制药过程化学.

    庆祝《化学学报》创刊90周年.
  • 基金资助:
    国家自然科学基金(21991112); 国家自然科学基金(21702134); 国家自然科学基金(21772119)

Development of Construction of Chiral C—X Bonds through Nickel Catalyzed Asymmetric Hydrogenation

Xinhong Cai, Jianzhong Chen(), Wanbin Zhang()   

  1. Shanghai Key Laboratory for Molecular Engineering and Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2023-04-17 Published:2023-05-15
  • Contact: *E-mail: 0091109001@sjtu.edu.cn; wanbin@sjtu.edu.cn
  • About author:
    Dedicated to the 90th anniversary of Acta Chimica Sinica.
  • Supported by:
    National Natural Science Foundation of China(21991112); National Natural Science Foundation of China(21702134); National Natural Science Foundation of China(21772119)

具有手性C—X (X=N, O, P, B, F等)键的骨架广泛存在于天然产物和生物活性分子中. 其合成方法研究受到了人们越来越多的关注. 其中, 过渡金属催化的不对称氢化反应是构建手性C—X键最有效的策略之一. 在众多过渡金属催化剂中, 铁钴镍铜等丰产金属因其储量丰富、环境友好以及价格低廉等优点而被用来替代铑钌铱钯等稀有金属应用于不对称氢化反应中. 目前, 以此方法来构建手性C—X键已经成为现代有机化学的发展趋势之一, 其中镍络合物作为催化剂的不对称氢化, 是发展较为迅速的方法之一. 基于此, 本文将综述丰产金属镍催化氢气条件下的不对称氢化构建手性C—X键的研究进展. 主要包括: (1)镍催化不对称氢化构建手性C—N键的研究; (2)镍催化不对称氢化构建手性C—O键的研究; (3)镍催化不对称氢化构建手性C—P键的研究; (4)镍催化不对称氢化构建手性C—B键的研究; (5)镍催化不对称氢化构建手性C—F键的研究.

关键词: 不对称氢化, 手性C—X键, 镍催化, 丰产金属, 活性分子

Chiral C—X (X=N, O, P, B, F, etc.) bond fragments are present in a wide variety of natural and pharmaceutically active molecules. Transition metal-catalyzed asymmetric hydrogenation is one of the most attractive strategies for the synthesis of these chiral compounds. Among the many transition metal catalysts, earth-abundant transition metals (iron, cobalt, nickel, and copper) have been used in asymmetric hydrogenation to replace rare metals (rhodium, ruthenium, iridium and palladium) due to their abundant reserves, low toxicity, and environmental friendliness. At present, this method for the construction of chiral C—X bonds has become a prominent trend in modern organic chemistry. Among them, the development of nickel catalysts has been relatively rapid. Based on this, the article will review the latest research in the preparation of compounds with chiral C—X bonds via nickel-catalyzed asymmetric hydrogenation using hydrogen. It is divided into five sections consisting of the construction of chiral C—N, C—O, C—P, C—B and C—F bonds by nickel-catalyzed asymmetric hydrogenation.

Key words: asymmetric hydrogenation, chiral C—X bonds, nickel catalysis, earth-abundant transition metals, active molecules