化学学报 ›› 2023, Vol. 81 ›› Issue (11): 1493-1499.DOI: 10.6023/A23060312 上一篇 下一篇
研究论文
王娟a, 肖华敏a, 谢丁a, 郭元茹b,*(), 潘清江a,*()
投稿日期:
2023-06-28
发布日期:
2023-08-17
基金资助:
Juan Wanga, Huamin Xiaoa, Ding Xiea, Yuanru Guob(), Qingjiang Pana()
Received:
2023-06-28
Published:
2023-08-17
Contact:
*E-mail: Supported by:
文章分享
氮氧化物已引发环境污染和危害人类健康等诸多问题. 然而, 氧化锌基传感器件在监测时存在响应和恢复时间长、核心材料和传感反应过程中间体结构不明确、传感机制不清楚等缺点. 为应对这些挑战, 采用了全电子密度泛函理论探索铜掺杂氧化锌(标记为ZOC)及其复合物材料的结构和对NO2的传感反应; 计算了复合物ZOC/CN和ZOC/Gr, 并与纯ZnO进行对比, 其中CN和Gr分别代表二维材料石墨型氮化碳和石墨烯. 计算显示, ZOC具有Cu-Zn杂核双金属活性吸附位点; 铜的引入增大了金属成分对最前线占据轨道贡献, 使得ZOC可同时通过Cu/Zn-O供体作用和反馈供体作用吸附NO2; 其吸附自由能相比ZnO增大0.27 eV. 这很好地解释了铜掺杂氧化锌有更快NO2响应时间的实验结果. 进一步复合CN能够提高NO2传感性能: ZOC/CN具有最大的NO2吸附能、很小的吸附第二个NO2上坡能(决速步)和较大的硝酸盐生成能. 通过电子结构、反应能和界面相互作用计算, 揭示了传感NO2的反应机制. 本工作为理解金属掺杂和材料复合等合成策略以及筛选有潜质敏感材料奠定了理论基础.
王娟, 肖华敏, 谢丁, 郭元茹, 潘清江. 铜掺杂与氮化碳复合氧化锌材料结构和二氧化氮气体传感性质的密度泛函理论计算[J]. 化学学报, 2023, 81(11): 1493-1499.
Juan Wang, Huamin Xiao, Ding Xie, Yuanru Guo, Qingjiang Pan. Density Functional Theory Study of Structures of Copper-doped and Graphitic Carbon Nitride-combined Zinc Oxides and Their Boosted Nitrogen Dioxide-sensing Performance[J]. Acta Chimica Sinica, 2023, 81(11): 1493-1499.
Parameters | ZOC-NO2 | ZOC/CN-NO2 | ZOC/Gr-NO2 | ZnO-NO2 a | NO2 |
---|---|---|---|---|---|
O1—Cu | 0.1988 (0.409) | 0.1989 (0.405) | 0.1983 (0.406) | — | — |
O2—Zn | 0.2256 | 0.2310 | 0.2267 | 0.2246 | — |
O1—N | 0.1270 (1.405) | 0.1275 (1.394) | 0.1272 (1.402) | 0.1208 (1.752) | 0.1213 (1.750) |
O2—N | 0.1233 (1.561) | 0.1231 (1.575) | 0.1235 (1.560) | 0.1239 (1.557) | 0.1213 (1.750) |
O1···O2 | 0.2208 (0.242) | 0.2207 (0.242) | 0.2207 (0.240) | 0.2214 (0.340) | 0.2228 (0.400) |
O1—N—O2 | 123.8 | 123.3 | 123.3 | 129.7 | 133.4 |
Parameters | ZOC-NO2 | ZOC/CN-NO2 | ZOC/Gr-NO2 | ZnO-NO2 a | NO2 |
---|---|---|---|---|---|
O1—Cu | 0.1988 (0.409) | 0.1989 (0.405) | 0.1983 (0.406) | — | — |
O2—Zn | 0.2256 | 0.2310 | 0.2267 | 0.2246 | — |
O1—N | 0.1270 (1.405) | 0.1275 (1.394) | 0.1272 (1.402) | 0.1208 (1.752) | 0.1213 (1.750) |
O2—N | 0.1233 (1.561) | 0.1231 (1.575) | 0.1235 (1.560) | 0.1239 (1.557) | 0.1213 (1.750) |
O1···O2 | 0.2208 (0.242) | 0.2207 (0.242) | 0.2207 (0.240) | 0.2214 (0.340) | 0.2228 (0.400) |
O1—N—O2 | 123.8 | 123.3 | 123.3 | 129.7 | 133.4 |
ZnO | ZOC | ZOC/CN | ||||||
---|---|---|---|---|---|---|---|---|
Orbitals | LUMO | HOMO | LUMO | HOMO | LUMO+3 | LUMO | HOMO | |
Energy/eV | –4.046 | –6.384 | –4.041 | –6.155 | –3.046 | –3.717 | –4.706 | |
Contribution/% | OZ | 14.73 | 73.67 | 14.92 | 62.70 | 2.08 | 0.00 | 45.61 |
Zn | 79.44 | 7.81 | 73.50 | 4.10 | 58.07 | 0.00 | 0.00 | |
Cu | — | — | 1.89 | 22.44 | 0.00 | 0.00 | 40.97 | |
CN | — | — | — | — | 5.46 | 81.04 | 0.00 | |
Composition/% | 79.44 4s(Zn) | 7.81 3d(Zn) | 73.50 4s(Zn), 1.89 4s(Cu) | 4.10 3d(Zn), 22.44 3d(Cu) | 58.07 4s(Zn) | — | 38.45 3d(Cu) | |
Eg/eV | 2.338 | 2.114 | 0.989 | |||||
∆rG/eV | 0.173 | –0.101 | –0.314 |
ZnO | ZOC | ZOC/CN | ||||||
---|---|---|---|---|---|---|---|---|
Orbitals | LUMO | HOMO | LUMO | HOMO | LUMO+3 | LUMO | HOMO | |
Energy/eV | –4.046 | –6.384 | –4.041 | –6.155 | –3.046 | –3.717 | –4.706 | |
Contribution/% | OZ | 14.73 | 73.67 | 14.92 | 62.70 | 2.08 | 0.00 | 45.61 |
Zn | 79.44 | 7.81 | 73.50 | 4.10 | 58.07 | 0.00 | 0.00 | |
Cu | — | — | 1.89 | 22.44 | 0.00 | 0.00 | 40.97 | |
CN | — | — | — | — | 5.46 | 81.04 | 0.00 | |
Composition/% | 79.44 4s(Zn) | 7.81 3d(Zn) | 73.50 4s(Zn), 1.89 4s(Cu) | 4.10 3d(Zn), 22.44 3d(Cu) | 58.07 4s(Zn) | — | 38.45 3d(Cu) | |
Eg/eV | 2.338 | 2.114 | 0.989 | |||||
∆rG/eV | 0.173 | –0.101 | –0.314 |
Complexes | BCPs a | ρ(r) | 2ρ(r) | H(r) | ε | Eint/eV |
---|---|---|---|---|---|---|
ZnO-NO2 | Zn—O | 0.0420 | 0.1774 | –0.00244 | 0.0396 | –0.670 |
ZOC-NO2 | Cu—O | 0.0797 | 0.2802 | –0.02526 | 0.0167 | –1.641 |
Zn—O | 0.0421 | 0.1764 | –0.00270 | 0.0432 | –0.673 | |
ZOC-2NO2 | Cu—O | 0.0813 | 0.2547 | –0.02706 | 0.0197 | –1.603 |
Zn—O | 0.0472 | 0.1943 | –0.00519 | 0.0354 | –0.802 | |
OZ—O | 0.0156 | 0.0432 | 0.00009 | 0.0930 | –0.144 | |
ZOC-2NO3 | Cu—O | 0.0735 | 0.2744 | –0.02168 | 0.0301 | –1.523 |
Zn—O | 0.0567 | 0.2302 | –0.01116 | 0.0484 | –1.087 | |
Zn—O | 0.0538 | 0.2023 | –0.00915 | 0.0357 | –0.937 | |
Zn—O | 0.0476 | 0.1970 | –0.00598 | 0.0466 | –0.833 | |
ZOC/CN-NO2 | Cu—O | 0.0811 | 0.3330 | –0.02736 | 0.0535 | –1.877 |
Zn—O | 0.0390 | 0.1532 | –0.00164 | 0.0164 | –0.566 | |
ZOC/CN-2NO2 | Zn—O | 0.0343 | 0.1465 | –0.00052 | 0.0849 | –0.512 |
Cu—O | 0.0800 | 0.2785 | –0.02633 | 0.0322 | –1.664 | |
OZ—N b | 0.0229 | 0.0756 | 0.00205 | 0.0380 | –0.201 | |
ZOC/CN-2NO3 | Cu—O | 0.0759 | 0.2917 | –0.02329 | 0.1063 | –1.626 |
Cu—O | 0.0695 | 0.2510 | –0.02099 | 0.0958 | –1.425 | |
Zn—O | 0.0530 | 0.2161 | –0.00946 | 0.0640 | –0.993 | |
Zn—O | 0.0507 | 0.2015 | –0.00758 | 0.0086 | –0.891 |
Complexes | BCPs a | ρ(r) | 2ρ(r) | H(r) | ε | Eint/eV |
---|---|---|---|---|---|---|
ZnO-NO2 | Zn—O | 0.0420 | 0.1774 | –0.00244 | 0.0396 | –0.670 |
ZOC-NO2 | Cu—O | 0.0797 | 0.2802 | –0.02526 | 0.0167 | –1.641 |
Zn—O | 0.0421 | 0.1764 | –0.00270 | 0.0432 | –0.673 | |
ZOC-2NO2 | Cu—O | 0.0813 | 0.2547 | –0.02706 | 0.0197 | –1.603 |
Zn—O | 0.0472 | 0.1943 | –0.00519 | 0.0354 | –0.802 | |
OZ—O | 0.0156 | 0.0432 | 0.00009 | 0.0930 | –0.144 | |
ZOC-2NO3 | Cu—O | 0.0735 | 0.2744 | –0.02168 | 0.0301 | –1.523 |
Zn—O | 0.0567 | 0.2302 | –0.01116 | 0.0484 | –1.087 | |
Zn—O | 0.0538 | 0.2023 | –0.00915 | 0.0357 | –0.937 | |
Zn—O | 0.0476 | 0.1970 | –0.00598 | 0.0466 | –0.833 | |
ZOC/CN-NO2 | Cu—O | 0.0811 | 0.3330 | –0.02736 | 0.0535 | –1.877 |
Zn—O | 0.0390 | 0.1532 | –0.00164 | 0.0164 | –0.566 | |
ZOC/CN-2NO2 | Zn—O | 0.0343 | 0.1465 | –0.00052 | 0.0849 | –0.512 |
Cu—O | 0.0800 | 0.2785 | –0.02633 | 0.0322 | –1.664 | |
OZ—N b | 0.0229 | 0.0756 | 0.00205 | 0.0380 | –0.201 | |
ZOC/CN-2NO3 | Cu—O | 0.0759 | 0.2917 | –0.02329 | 0.1063 | –1.626 |
Cu—O | 0.0695 | 0.2510 | –0.02099 | 0.0958 | –1.425 | |
Zn—O | 0.0530 | 0.2161 | –0.00946 | 0.0640 | –0.993 | |
Zn—O | 0.0507 | 0.2015 | –0.00758 | 0.0086 | –0.891 |
[1] |
Pasupuleti K. S.; Reddeppa M.; Nam D.-J.; Bak N.-H.; Peta K. R.; Cho H. D.; Kim S.-G.; Kim M.-D. Sens. Actuators B Chem. 2021, 344, 130267.
doi: 10.1016/j.snb.2021.130267 |
[2] |
Ji H. C.; Zeng W.; Li Y. Q. Nanoscale 2019, 11, 22664.
doi: 10.1039/C9NR07699A |
[3] |
Pasupuleti K. S.; Reddeppa M.; Chougule S. S.; Bak N.-h.; Nam D.-J.; Jung N.; Cho H. D.; Kim S.-G.; Kim M.-D. J. Hazard. Mater. 2022, 427, 128174.
doi: 10.1016/j.jhazmat.2021.128174 |
[4] |
Li Q. T.; Zeng W.; Li Y. Q. Sens. Actuators B Chem. 2022, 359, 131579.
doi: 10.1016/j.snb.2022.131579 |
[5] |
Kim K.-H.; Jahan S. A.; Kabir E. Environ. Int. 2013, 59, 41.
doi: 10.1016/j.envint.2013.05.007 pmid: 23770580 |
[6] |
Prema D.; Binu N. M.; Prakash J.; Venkatasubbu G. D. Photodiagn. Photodyn. Ther. 2021, 34, 102291.
doi: 10.1016/j.pdpdt.2021.102291 |
[7] |
Liu J.; Zhang W. H.; Wang A. Y.; Zhang Z. Y.; Lv Y. Y. Integr. Ferroelectr. 2020, 209, 98.
doi: 10.1080/10584587.2020.1728815 |
[8] |
Jain S.; Karmakar N.; Shah A.; Shimpi N. G. Mater. Sci. Eng. B 2019, 247, 114381.
doi: 10.1016/j.mseb.2019.114381 |
[9] |
Ganbavle V. V.; Inamdar S. I.; Agawane G. L.; Kim J. H.; Rajpure K. Y. Chem. Eng. J. 2016, 286, 36.
doi: 10.1016/j.cej.2015.10.052 |
[10] |
Chen X.; Li Y.; Li C.; Cao H.; Wang C.; Cheng S.; Zhang Q. Chin. J. Chem. 2021, 39, 2441.
doi: 10.1002/cjoc.v39.9 |
[11] |
Ding W.; Liu D.; Liu J.; Zhang J. Chin. J. Chem. 2020, 38, 1832.
doi: 10.1002/cjoc.v38.12 |
[12] |
Alev O.; Ergun I.; Ozdemir O.; Arslan L. C.; Buyukkose S.; Ozturk Z. Z. Mater. Sci. Semicond. Process. 2021, 136, 106149.
doi: 10.1016/j.mssp.2021.106149 |
[13] |
Kamble V. S.; Zemase R. K.; Gupta R. H.; Aghav B. D.; Shaikh S. A.; Pawara J. M.; Patil S. K.; Salunkhe S. T. Opt. Mater. 2022, 131, 112706.
doi: 10.1016/j.optmat.2022.112706 |
[14] |
Hadia N. M. A.; Aljudai M.; Alzaid M.; Mohamed S. H.; Mohamed W. S. Appl. Phys. A-Mater. Sci. Process. 2022, 128, 17.
doi: 10.1007/s00339-021-05155-8 |
[15] |
Babikier M.; Wang D.; Wang J.; Li Q.; Sun J.; Yan Y.; Yu Q.; Jiao S. Nanoscale Res. Lett. 2014, 9, 199.
doi: 10.1186/1556-276X-9-199 pmid: 24855460 |
[16] |
Li C.; Song B.-Y.; Teng Y.; Zhang X.-F.; Deng Z.-P.; Xu Y.-M.; Huo L.-H.; Gao S. Sens. Actuators B Chem. 2021, 333, 129627.
doi: 10.1016/j.snb.2021.129627 |
[17] |
Simon Patrick D.; Govind A.; Bharathi P.; Krishna Mohan M.; Harish S.; Archana J.; Navaneethan M. Appl. Surf. Sci. 2023, 609, 155337.
doi: 10.1016/j.apsusc.2022.155337 |
[18] |
Wang H.; Bai J.; Dai M.; Liu K.; Liu Y.; Zhou L.; Liu F.; Liu F.; Gao Y.; Yan X.; Lu G. Sens. Actuators B Chem. 2020, 304, 127287.
doi: 10.1016/j.snb.2019.127287 |
[19] |
Patil V. L.; Vanalakar S. A.; Tarwal N. L.; Patil A. P.; Dongale T. D.; Kim J. H.; Patil P. S. Sens. Actuators A Phys. 2019, 299, 111611.
doi: 10.1016/j.sna.2019.111611 |
[20] |
Lokhande S. D.; Awale M. B.; Mote V. D. J. Mater. Sci. Mater. Electron. 2022, 33, 25063.
doi: 10.1007/s10854-022-09213-6 |
[21] |
Mhlongo G. H.; Shingange K.; Tshabalala Z. P.; Dhonge B. P.; Mahmoud F. A.; Mwakikunga B. W.; Motaung D. E. Appl. Surf. Sci. 2016, 390, 804.
doi: 10.1016/j.apsusc.2016.08.138 |
[22] |
Brahma S.; Yeh Y. W.; Huang J. L.; Liu C. P. Appl. Surf. Sci. 2021, 564, 150351.
doi: 10.1016/j.apsusc.2021.150351 |
[23] |
Shewale P. S.; Patil V. B.; Shin S. W.; Kim J. H.; Uplane M. D. Sens. Actuators B Chem. 2013, 186, 226.
doi: 10.1016/j.snb.2013.05.073 |
[24] |
Rudra P.; Chakraborty N.; Srihari V.; Mishra A. K.; Das S.; Saha D.; Mondal S. Mater. Chem. Phys. 2023, 295, 127047.
doi: 10.1016/j.matchemphys.2022.127047 |
[25] |
Chow L.; Lupan O.; Chai G.; Khallaf H.; Ono L. K.; Roldan Cuenya B.; Tiginyanu I. M.; Ursaki V. V.; Sontea V.; Schulte A. Sens. Actuators A Phys. 2013, 189, 399.
doi: 10.1016/j.sna.2012.09.006 |
[26] |
Esmaeilzadeh O.; Eivani A. R.; Mehdizade M.; Boutorabi S. M. A.; Masoudpanah S. M. J. Alloy. Compd. 2022, 908, 164437.
doi: 10.1016/j.jallcom.2022.164437 |
[27] |
Elavarasan N.; Rajkumar C.; Venkatesh G.; Srinivasan M.; Palanisamy G.; Shobana Priyanka D.; Kim H. J. Phys. Chem. Solids 2022, 169, 110856.
doi: 10.1016/j.jpcs.2022.110856 |
[28] |
Qi K. Z.; Xing X. H.; Zada A.; Li M. Y.; Wang Q.; Liu S. Y.; Lin H. X.; Wang G. Z. Ceram. Int. 2020, 46, 1494.
doi: 10.1016/j.ceramint.2019.09.116 |
[29] |
Liu X.; Yang Z.; Li K.; Briseghella B.; Marano G. C.; Xu J. RSC Adv. 2023, 13, 9448.
doi: 10.1039/D2RA08281K |
[30] |
Javed M.; Qamar M. A.; Shahid S.; Alsaab H. O.; Asif S. RSC Adv. 2021, 11, 37254.
doi: 10.1039/D1RA07203J |
[31] |
Ravichandran K.; Seelan K. S.; Kavitha P.; Sriram S. J. Mater. Sci. Mater. Electron. 2019, 30, 19703.
doi: 10.1007/s10854-019-02321-w |
[32] |
Bajiri M. A.; Hezam A.; Namratha K.; Al-Maswari B. M.; BhojyaNaik H. S.; Byrappa K.; Al-Zaqri N.; Alsalme A.; Alasmari R. New J. Chem. 2021, 45, 13499.
doi: 10.1039/D1NJ01044A |
[33] |
Gao R.; Gao L.; Zhang X.; Gao S.; Xu Y.; Cheng X.; Guo G.; Ye Q.; Zhou X.; Major Z.; Huo L. Sens. Actuators B Chem. 2021, 342, 130073.
doi: 10.1016/j.snb.2021.130073 |
[34] |
Modak M.; Mahajan S.; Shinde M.; Rane S.; Jagtap S. J. Mater. Sci. Mater. Electron. 2022, 33, 26205.
doi: 10.1007/s10854-022-09306-2 |
[35] |
Li Y. X.; Wang W. Q.; Gong H. X.; Xu J. H.; Yu Z. C.; Wei Q. H.; Tang D. P. J. Mater. Chem. B 2021, 9, 6818.
doi: 10.1039/D1TB01465J |
[36] |
Charvadeh S. K.; Nejatinia S.; Khatibani A. B.; Ahmadi M. H. Bull. Mater. Sci. 2022, 45, 61.
doi: 10.1007/s12034-021-02644-7 |
[37] |
Ahmed S.; Ashraf M.; Yousaf S.; Alsafari I. A.; Akhtar M.; Shahid M.; Somaily H. H.; Warsi M. F. Mater. Chem. Phys. 2023, 297, 127335.
doi: 10.1016/j.matchemphys.2023.127335 |
[38] |
Rong P.; Jiang Y. F.; Wang Q.; Gu M.; Jiang X. L.; Yu Q. J. Mater. Chem. A 2022, 10, 6231.
doi: 10.1039/D1TA09954J |
[39] |
Shenoy S.; Ahmed S.; Lo I. M. C.; Singh S.; Sridharan K. Mater. Res. Bull. 2021, 140, 111290.
doi: 10.1016/j.materresbull.2021.111290 |
[40] |
Shewale P. S.; Yun K. S. J. Alloy. Compd. 2020, 837, 155527.
doi: 10.1016/j.jallcom.2020.155527 |
[41] |
Camarillo-Salazar E.; Garcia-Diaz R.; Avila-Alvarado Y.; Guerrero-Sanchez J.; Romero de la Cruz M. T.; Hernández Cocoletzi G. Appl. Surf. Sci. 2020, 500, 144031.
doi: 10.1016/j.apsusc.2019.144031 |
[42] |
Xiao H.-M.; Hou Y.-C.; Guo Y.-R.; Pan Q.-J. Chemosphere 2023, 324, 138325.
doi: 10.1016/j.chemosphere.2023.138325 |
[43] |
Wang Z. D.; Wang H. J.; Wang L. R.; Zhao H. F.; Kamboh M. A.; Hao L.; Chen Q. L.; He K. H.; Wang Q. B. Phys. E 2020, 115, 113702.
doi: 10.1016/j.physe.2019.113702 |
[44] |
Wang H.; Dai M.; Li Y.; Bai J.; Liu Y.; Li Y.; Wang C.; Liu F.; Lu G. Sens. Actuators B Chem. 2021, 329, 129145.
doi: 10.1016/j.snb.2020.129145 |
[45] |
Rahmani M. B.; Keshmiri S. H.; Shafiei M.; Latham K.; Wlodarski W.; du Plessis J.; Kalantar-Zadeh K. Sens. Lett. 2009, 7, 621.
doi: 10.1166/sl.2009.1121 |
[46] |
Labhane P. K.; Huse V. R.; Patle L. B.; Chaudhari A. L.; Sonawane G. H. J. J. o. M. S.; Engineering C. J. Mater. Sci. Chem. Eng. 2015, 3, 39.
|
[47] |
Li G.; Zhang H.; Meng L.; Sun Z.; Chen Z.; Huang X.; Qin Y. Sci. Bull. 2020, 65, 1650.
doi: 10.1016/j.scib.2020.05.027 |
[48] |
Yang Z.; Tian J.; Cai H.; Li L.; Pan Q. Acta Chim. Sinica 2020, 78, 1096. (in Chinese)
doi: 10.6023/A20070284 |
( 杨之策, 田佳楠, 才洪雪, 李丽, 潘清江, 化学学报, 2020, 78, 1096.)
doi: 10.6023/A20070284 |
|
[49] |
Chen F.; Qu N.; Wu Q.; Zhang H.; Shi W.; Pan Q. Acta Chim. Sinica 2017, 75, 457. (in Chinese)
doi: 10.6023/A17010008 |
( 陈方园, 曲宁, 吴群燕, 张红星, 石伟群, 潘清江, 化学学报, 2017, 75, 457.)
doi: 10.6023/A17010008 |
|
[50] |
te Velde G.; Bickelhaupt F. M.; Baerends E. J.; Fonseca Guerra C.; van Gisbergen S. J. A.; Snijders J. G.; Ziegler T. J. Comput. Chem. 2001, 22, 931.
doi: 10.1002/jcc.v22:9 |
[51] |
Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Mennucci B.; Petersson G. A.; Nakatsuji H.; Caricato M.; Li X.; Hratchian H. P.; Izmaylov A. F.; Bloino J.; Zheng G.; Sonnenberg J. L.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Montgomery J. A., Jr.; Peralta J. E.; Ogliaro F.; Bearpark M.; Heyd J. J.; Brothers E.; Kudin K. N.; Staroverov V. N.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Rega N.; Millam J. M.; Klene M.; Knox J. E.; Cross J. B.; Bakken V.; Adamo C.; Jaramillo J.; Gomperts R.; Stratmann R. E.; Yazyev O.; Austin A. J.; Cammi R. P. C.; Ochterski J. W.; Martin R. L.; Morokuma K.; Zakrzewski V. G.; Voth G. A.; Salvador P.; Dannenberg J. J.; Dapprich S.; Daniels A. D.; Farkas O.; Foresman J. B.; Ortiz J. V.; Cioslowski J.; Fox D. J. Gaussian 09, Revision D.01 ed., Gaussian, Inc., Wallingford CT, 2009.
|
[52] |
Lu T.; Chen F. J. Comput. Chem. 2012, 33, 580.
doi: 10.1002/jcc.v33.5 |
[53] |
Frenking S. D. a. G. J. Phys. Chem. 1995, 99, 9352.
doi: 10.1021/j100023a009 |
[54] |
Wang J.; Hou Y.-C.; Guo Y.-R.; Wang X.-Y.; Ding S.-D.; Pan Q.-J. Inorg. Chem. 2023, 62, 10762.
doi: 10.1021/acs.inorgchem.3c01297 |
[1] | 张丹琪, 邵英博, 郑汉良, 周碧莹, 薛小松. 双齿氮配体螯合五价碘试剂介导的苯酚氧化去芳构化机理的理论研究[J]. 化学学报, 2021, 79(11): 1394-1400. |
[2] | 薄一凡, 刘玉玉, 常永正, 李银祥, 张效霏, 宋春元, 许卫锋, 曹洪涛, 黄维. 环状芴基张力半导体拉曼光谱理论与实验研究[J]. 化学学报, 2019, 77(5): 442-446. |
[3] | 朱纯, 曹泽星. 高效金属双卟啉染料的计算设计及其敏化TiO2半导体复合体系的理论研究[J]. 化学学报, 2013, 71(11): 1527-1534. |
[4] | 顾均, 丁祎, 柯俊, 张亚文, 严纯华. 基于软硬酸碱理论的单分散中重稀土硫氧化物纳米板的可控合成[J]. 化学学报, 2013, 71(03): 360-366. |
[5] | 刘琼, 汪佩, 张干兵. OsO+氧化活化氢分子气相反应机理的密度泛函理论计算[J]. 化学学报, 2012, 70(12): 1337-1346. |
[6] | 韦永勤, 吴克琛, 林晨升, 莽朝永, 刘萍, 张明昕, 洪涛, 周张锋, 庄伯涛. 非线性光学极化率密度泛函理论计算的基组效应[J]. 化学学报, 2004, 62(6): 578-582. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||