化学学报 ›› 2024, Vol. 82 ›› Issue (3): 323-335.DOI: 10.6023/A23100460 上一篇 下一篇
综述
李春萌a, 毕哲a, 王海潮b,*(), 陆克定c,d,*()
投稿日期:
2023-10-23
发布日期:
2024-01-04
作者简介:
李春萌, 中国计量科学研究院环境计量中心博士后, 研究方向为大气痕量物种标准物质研发和以有机硝酸酯为代表的大气化学研究. |
毕哲, 中国计量科学研究院环境计量中心副研究员, 研究方向包括气体计量、仪器开发和校准, 致力于开发用于臭氧/PM2.5前体监测的挥发性有机化合物气体标准, 并逐步开展温室气体、室内空气质量和呼出气体监测等相关领域的研究. |
王海潮, 中山大学大气科学学院副教授, 研究方向为大气测量技术和大气污染成因研究. |
陆克定, 研究员、博士生导师. 主要研究方向为大气环境化学和减污降碳协同防控策略, 基于自由基及其关键前体物的直接观测和动力学模拟等研究手段, 关注典型城市环境中大气自由基的来源和转化以及相应大气化学机理的研发. 曾获得国家自然科学基金优秀青年科学基金(2015)、北京市科技新星(2015)、国家环境保护专业技术青年拔尖人才(2016)、长江学者青年项目(2017)、北京市杰出青年基金项目(2019)及国家杰出青年基金项目(2023), 获得教育部自然科学奖一等奖(2017)和中国环境学会青年科学家奖金奖(2019)等. |
基金资助:
Chunmeng Lia, Zhe Bia, Haichao Wangb(), Keding Luc,d()
Received:
2023-10-23
Published:
2024-01-04
Contact:
*E-mail: Supported by:
文章分享
烷基硝酸酯(ANs)是对流层大气中重要的污染物, 其收支过程对大气氮、碳的分布, 光化学循环以及二次有机气溶胶生成等具有重要影响. 大气ANs种类繁多, 浓度低且化学性质活泼, 因此ANs的准确测量是大气监测领域的巨大挑战. 概述了大气ANs化学机理, 系统梳理并总结了ANs单物种和总量的实地测量技术进展, 主要包括气相色谱电子捕获技术、质谱技术、荧光光谱技术和吸收光谱技术. 研究表明吸收光谱技术具有结构简单易维护的特征, 是具有较大发展潜力的ANs总量测量方法, 质谱技术在ANs分物种测量方面具有其独特优势, 但物种化的标准源和标定技术是亟待突破的关键瓶颈. 最后, 系统归纳了不同环境类型的ANs浓度分布特征, 并对ANs化学研究难点和发展趋势进行展望.
李春萌, 毕哲, 王海潮, 陆克定. 大气烷基硝酸酯的实地测量[J]. 化学学报, 2024, 82(3): 323-335.
Chunmeng Li, Zhe Bi, Haichao Wang, Keding Lu. Field Measurement of Alkyl Nitrates in the Atmosphere[J]. Acta Chimica Sinica, 2024, 82(3): 323-335.
Technique | Measuring paramater | Measure species | Calibration | Temporal resolution | Detection limit | Accuracy/% | Main interference | Ref. |
---|---|---|---|---|---|---|---|---|
GC-CL NO2 | electrical signal | C3~C6 alkyl nitrates; C2~C4 OH-AN; C2~C4 dinitrates | A mixed standard of 19 organic nitrates | 30 min | 0.25 nmol/L | — | [ | |
GC-MS | mass spectrum | C3~C7 alkyl nitrates | C3~C7 AN | off-line | 0.1 pL/L | 5 | — | [ |
GC-ECD | electrical signal | C1~C4 ONs | PANs standard | 12 min | 10 pL/L | 5 | halogenated hydrocarbon | [ |
TD-LIF | fluorescence spectrum | ANs, PNs, NO2 | PAN, 2 alkyl nitrate, NO2 standard | 10 s | 90 pL/L | 10~15 | Ambient NOx; HNO3 | [ |
CIMS | mass spectrum | ISOPN, MOBN, PROPNN, MVKN+MACRN, ETHLN | nitric acid (relative sensitivity) | 1.6 h | 0.1 pL/L | 40 | humidity; 13C isotope signal | [ |
GC-MS | mass spectrum | 2 β-IHN, 4 ICN, propanone nitrate | n-butyl nitrate (relative sensitivity) | 1 h | 1 pL/L | 14 | humidity | [ |
TD-CAPS | phase shift | ONs, PNs, NO2 | PAN, PPN, 5 alkyl nitrates, NO2 standard | 2 min | 21 pL/L | — | Ambient NO2; HNO3 | [ |
TD-CRDS | ring-down time | ANs, PNs, NO2 | i-propyl nitrate, PAN, NO2 standard | 4 min | 80/94/59 pL/L | 8 | humidity; ClNO2; ambient NO2 | [ |
TD-CEAS | absorption spectrum | ANs, PNs, NO2 | PAN standard | 3 min | 91 pL/L | 8 | ambient NOx | [ |
Technique | Measuring paramater | Measure species | Calibration | Temporal resolution | Detection limit | Accuracy/% | Main interference | Ref. |
---|---|---|---|---|---|---|---|---|
GC-CL NO2 | electrical signal | C3~C6 alkyl nitrates; C2~C4 OH-AN; C2~C4 dinitrates | A mixed standard of 19 organic nitrates | 30 min | 0.25 nmol/L | — | [ | |
GC-MS | mass spectrum | C3~C7 alkyl nitrates | C3~C7 AN | off-line | 0.1 pL/L | 5 | — | [ |
GC-ECD | electrical signal | C1~C4 ONs | PANs standard | 12 min | 10 pL/L | 5 | halogenated hydrocarbon | [ |
TD-LIF | fluorescence spectrum | ANs, PNs, NO2 | PAN, 2 alkyl nitrate, NO2 standard | 10 s | 90 pL/L | 10~15 | Ambient NOx; HNO3 | [ |
CIMS | mass spectrum | ISOPN, MOBN, PROPNN, MVKN+MACRN, ETHLN | nitric acid (relative sensitivity) | 1.6 h | 0.1 pL/L | 40 | humidity; 13C isotope signal | [ |
GC-MS | mass spectrum | 2 β-IHN, 4 ICN, propanone nitrate | n-butyl nitrate (relative sensitivity) | 1 h | 1 pL/L | 14 | humidity | [ |
TD-CAPS | phase shift | ONs, PNs, NO2 | PAN, PPN, 5 alkyl nitrates, NO2 standard | 2 min | 21 pL/L | — | Ambient NO2; HNO3 | [ |
TD-CRDS | ring-down time | ANs, PNs, NO2 | i-propyl nitrate, PAN, NO2 standard | 4 min | 80/94/59 pL/L | 8 | humidity; ClNO2; ambient NO2 | [ |
TD-CEAS | absorption spectrum | ANs, PNs, NO2 | PAN standard | 3 min | 91 pL/L | 8 | ambient NOx | [ |
Time | Location | Environmental type | Measured species | Technique | Major finding | Ref. |
---|---|---|---|---|---|---|
April~July, 1986 | North Pacific Ocean | Remote | C3~C5 AN | GC-ECD/GC-NI-MS | The first direct evidence for existence and transport of C3~C5 alkyl nitrates in the troposphere are provided | [ |
July~August, 1986 | Pennsylvania, USA | Rural | C2~C5 AN | GC-ECD | Each of the organic nitrates exhibited a marked diurnal variation, about 15% of the measured NOy could not be accounted for by the sum of the individually measured species | [ |
August, 1992 | Ontario, Canada | Rural | C3~C6 ANs, C2~C4 OH-ANs, 1,2-diANs | GC-ECD-CL | First report about the field observation of multifunctional nitrates | [ |
March~May, 1993 | Alaska, USA | Forest | C2~C6 AN | GC-ECD/GC-MS | PAN is correlated with ozone, and alkyl nitrates are correlated with alkane | [ |
August~September, 1993 | Nova Scotia, Canada | Suburban | C1~C4 AN | GC-ECD | The comparison of the ratios of alkyl nitrates to their parent hydrocarbons to that of 2-butyl nitrate/butane showed significant deviations from trends predicted from rate constants, branching ratios, and loss rates | [ |
August, 1995 | California, USA | Coastline | C1~C15 AN, di-ANs and benzyl nitrate | GC-ECD/GC-MS | The ≥C6 alkyl nitrates in continental air can contribute 1%~2% to the total NOy, and the relative abundance of benzyl nitrate compared to alkyl (mono) nitrates is used as a tool for global air mass characterization | [ |
May~June, 1994 | The South Atlantic | Remote | C3~C14 AN | GC-ECD/GC-MSD | Higher concentrations in the west wind belt reveal the influence of the South American continent as the source for the alkyl nitrates, long chain alkyl nitrates is useful as trace indicators to distinguish continental and marine air masses | [ |
October~November, 1996 | Atlantic Ocean | Ship-based | C1~C13 AN, C3~C6 di-AN, C2~C6 OH-AN, benzyl nitrate | GC-ECD/GC-MSD | The low concentrations in marine air reflect chemical and physical loss processes during long-range transport of the air starting from the continent | [ |
14 July~19 August, 1998 | Michigan, US | Forest -Tower | Isoprene nitrates | GC-TD-PL | Concentrations of isoprene nitrates exhibited a strong diurnal variation consistent with their expected chemical and physical removal rates | [ |
February, 1999 | Neumayer Station, Antarctic | Remote | C1~C9 AN, C2~C4 di- =AN, C2~C4 OH-AN | GC-ECD | The common assumption are confirmed that there are no biogenic marine sources of C2~C9 organic nitrates in Antarctic | [ |
October, 2000; August, 2000; July, 2001 | Blodgett Forest/ La Porte/Granite Bay, USA | Rural/Suburban/ Urban | ANs | TD-LIF | ANs are a large part, if not all, of the ‘missing NOy’ reported in many prior experiments | [ |
March, 2003~ February, 2004 | Big Hill, USA | Remote | ANs | TD-LIF | The important contribution of ANs to NOy in the region suggests that they should be considered with regards to export of NOy from the boundary layer | [ |
August, 2001~December, 2002 | Hong Kong, China | Coastline | C1~C5 AN | GC-ECD | The C3~C4 (rather than C1~C2) alkyl nitrates were most abundant, showing the importance of photochemical (rather than marine) RONO2 production | [ |
July~August, 2004 | North Atlantic | Airborne | C1~C5 AN | GC-MS | The general agreement between the alkyl nitrate data and photochemical theory suggests that during the first few days of transport from the source region, photochemical production of alkyl nitrates, and thus ozone, had taken place | [ |
July~August 2004 | North America | Airborne | C1~C5 AN, ANs | GC-ECD/GC-MS/TD-LIF | The sum of isoprene nitrate and other alkyl and multifunctional nitrates contribute about 10% to the mean NOy in the continental boundary layer | [ |
Spring of 2006 | Mexico City | Airborne | ANs | TD-LIF | ANs were observed to be 10%~20% of NOy in the Mexico City plume, and ANs formation suppressed peak ozone production rates by as much as 40% in the near-field of Mexico City | [ |
17 March and 29 March 2006 | Mexico City | Urban | ANs | TD-LIF | Reductions in VOC reactivity that inadvertently reduce organic nitrate production rates will be counterproductive without concurrent reductions in NOx or other organics | [ |
June~August 2009 | Sierra Nevada, US | Forest | multifunctional RONO2, ANs | CIMS/TD-LIF | The sum of the individual biogenically derived nitrates account for two-thirds of the ANs, confirming predictions of the importance of biogenic nitrates to the NOy budget | [ |
2012 | Beijing, China | Urban | C1~C4 AN | canister samples & GC | Ox/RONO2 could indicate the relative importance of carbonyls to Ox formation | [ |
June~July 2008 | Boreal forest, Canada | Airborne | ANs | TD-LIF | ANs account for ≈20% of total oxidized nitrogen and that their instantaneous production rate is larger than that of HNO3 | [ |
July~August 2011 | Colorado, USA | Forest | ANs | TD-LIF | Nighttime production of organic nitrates is comparable in magnitude to daytime photochemical production at this site | [ |
January~February, 2012 | Utah, USA. | Tower | ANs | TD-LIF | ANs were a large fraction (≈60%) of the HOx free radical chain termination and the temperature dependence of the alkyl nitrate yields enhances the role of ANs in local chemistry during winter | [ |
May~July, 2013 | Centerville, USA | Forest | Isoprene hydroxy nitrates | CIMS | NO as the limiting factor for ambient IN production during SOAS | [ |
September~November, 2010 | Hong Kong, China | Remote/Urban | C1~C4 AN | GC-ECD | Secondary formation was the prominent contributor of ANs in the meso scenario, while biomass burning and secondary formation made comparable contributions to ANs in the nonmeso scenario | [ |
June~July, 2013 | Bibb County, Alabama, USA | Rural | ANs | TD-LIF | The lifetime of NOx during the daytime is controlled primarily by the production and loss of ANs which were predominantly produced during isoprene oxidation | [ |
August~September, 2011 | Kleiner Feldberg, Germany | Rural | ANs | TD-CRDS | A significant fraction of NOx (up to 75%) is sequestered as organics nitrates, and the night-time production of alkyl nitrates by reaction of NO3 with biogenic hydrocarbons is comparable to that from daytime OH-initiated oxidation pathways | [ |
May, August, November, 2011; February, 2012 | Hong Kong, China | Suburban | C1~C4 AN | GC-ECD | The photochemical formation and biomass burning were the major sources of C2~C4 RONO2, whereas MeONO2 was mainly from oceanic emissions during the entire sampling period | [ |
June, 2005/July, 2008 | Beijing, China | Urban/Rural | C1~C5 AN | GC-ECD/MSD | The mixing ratios of RONO2 were comparable between both sites, emphasizing the regional nature of alkyl nitrate pollution | [ |
February~April, June~July, 2017 | Yellow River Delta, China | Rural | C1~C5 AN | GC-ECD/MSD | Alkyl nitrates showed well-defined diurnal variations, elucidating the effects of in-situ photochemical production and regional transport of aged polluted plumes | [ |
December, 2012~December, 2015 | Suzu, Japan | Remote | ANs | TD-CAPS | PNs and ONs showed similar seasonal variations with maximum concentrations in spring and minimum concentrations in summer | [ |
May~June, 2017 | Beijing, China | Urban | Isoprene nitrates | GC-NI-MS | In the summertime conditions experienced in Beijing the ratio of (1-OH, 2-ONO2) IHN to (4-OH, 3-ONO2)-IHN (the numbers indicate the carbon atom in the isoprene chain to which the radical is added) increases at NO mixing ratios below 2 nL/L | [ |
August~September, 2019 | Chengdu, China | Suburban | ANs | TD-CEAS | The production of both O3 and ANs was in the VOC-limited regime and highlights the importance of VOC control (especially aromatics) to mitigate photochemical pollution in Chengdu | [ |
Time | Location | Environmental type | Measured species | Technique | Major finding | Ref. |
---|---|---|---|---|---|---|
April~July, 1986 | North Pacific Ocean | Remote | C3~C5 AN | GC-ECD/GC-NI-MS | The first direct evidence for existence and transport of C3~C5 alkyl nitrates in the troposphere are provided | [ |
July~August, 1986 | Pennsylvania, USA | Rural | C2~C5 AN | GC-ECD | Each of the organic nitrates exhibited a marked diurnal variation, about 15% of the measured NOy could not be accounted for by the sum of the individually measured species | [ |
August, 1992 | Ontario, Canada | Rural | C3~C6 ANs, C2~C4 OH-ANs, 1,2-diANs | GC-ECD-CL | First report about the field observation of multifunctional nitrates | [ |
March~May, 1993 | Alaska, USA | Forest | C2~C6 AN | GC-ECD/GC-MS | PAN is correlated with ozone, and alkyl nitrates are correlated with alkane | [ |
August~September, 1993 | Nova Scotia, Canada | Suburban | C1~C4 AN | GC-ECD | The comparison of the ratios of alkyl nitrates to their parent hydrocarbons to that of 2-butyl nitrate/butane showed significant deviations from trends predicted from rate constants, branching ratios, and loss rates | [ |
August, 1995 | California, USA | Coastline | C1~C15 AN, di-ANs and benzyl nitrate | GC-ECD/GC-MS | The ≥C6 alkyl nitrates in continental air can contribute 1%~2% to the total NOy, and the relative abundance of benzyl nitrate compared to alkyl (mono) nitrates is used as a tool for global air mass characterization | [ |
May~June, 1994 | The South Atlantic | Remote | C3~C14 AN | GC-ECD/GC-MSD | Higher concentrations in the west wind belt reveal the influence of the South American continent as the source for the alkyl nitrates, long chain alkyl nitrates is useful as trace indicators to distinguish continental and marine air masses | [ |
October~November, 1996 | Atlantic Ocean | Ship-based | C1~C13 AN, C3~C6 di-AN, C2~C6 OH-AN, benzyl nitrate | GC-ECD/GC-MSD | The low concentrations in marine air reflect chemical and physical loss processes during long-range transport of the air starting from the continent | [ |
14 July~19 August, 1998 | Michigan, US | Forest -Tower | Isoprene nitrates | GC-TD-PL | Concentrations of isoprene nitrates exhibited a strong diurnal variation consistent with their expected chemical and physical removal rates | [ |
February, 1999 | Neumayer Station, Antarctic | Remote | C1~C9 AN, C2~C4 di- =AN, C2~C4 OH-AN | GC-ECD | The common assumption are confirmed that there are no biogenic marine sources of C2~C9 organic nitrates in Antarctic | [ |
October, 2000; August, 2000; July, 2001 | Blodgett Forest/ La Porte/Granite Bay, USA | Rural/Suburban/ Urban | ANs | TD-LIF | ANs are a large part, if not all, of the ‘missing NOy’ reported in many prior experiments | [ |
March, 2003~ February, 2004 | Big Hill, USA | Remote | ANs | TD-LIF | The important contribution of ANs to NOy in the region suggests that they should be considered with regards to export of NOy from the boundary layer | [ |
August, 2001~December, 2002 | Hong Kong, China | Coastline | C1~C5 AN | GC-ECD | The C3~C4 (rather than C1~C2) alkyl nitrates were most abundant, showing the importance of photochemical (rather than marine) RONO2 production | [ |
July~August, 2004 | North Atlantic | Airborne | C1~C5 AN | GC-MS | The general agreement between the alkyl nitrate data and photochemical theory suggests that during the first few days of transport from the source region, photochemical production of alkyl nitrates, and thus ozone, had taken place | [ |
July~August 2004 | North America | Airborne | C1~C5 AN, ANs | GC-ECD/GC-MS/TD-LIF | The sum of isoprene nitrate and other alkyl and multifunctional nitrates contribute about 10% to the mean NOy in the continental boundary layer | [ |
Spring of 2006 | Mexico City | Airborne | ANs | TD-LIF | ANs were observed to be 10%~20% of NOy in the Mexico City plume, and ANs formation suppressed peak ozone production rates by as much as 40% in the near-field of Mexico City | [ |
17 March and 29 March 2006 | Mexico City | Urban | ANs | TD-LIF | Reductions in VOC reactivity that inadvertently reduce organic nitrate production rates will be counterproductive without concurrent reductions in NOx or other organics | [ |
June~August 2009 | Sierra Nevada, US | Forest | multifunctional RONO2, ANs | CIMS/TD-LIF | The sum of the individual biogenically derived nitrates account for two-thirds of the ANs, confirming predictions of the importance of biogenic nitrates to the NOy budget | [ |
2012 | Beijing, China | Urban | C1~C4 AN | canister samples & GC | Ox/RONO2 could indicate the relative importance of carbonyls to Ox formation | [ |
June~July 2008 | Boreal forest, Canada | Airborne | ANs | TD-LIF | ANs account for ≈20% of total oxidized nitrogen and that their instantaneous production rate is larger than that of HNO3 | [ |
July~August 2011 | Colorado, USA | Forest | ANs | TD-LIF | Nighttime production of organic nitrates is comparable in magnitude to daytime photochemical production at this site | [ |
January~February, 2012 | Utah, USA. | Tower | ANs | TD-LIF | ANs were a large fraction (≈60%) of the HOx free radical chain termination and the temperature dependence of the alkyl nitrate yields enhances the role of ANs in local chemistry during winter | [ |
May~July, 2013 | Centerville, USA | Forest | Isoprene hydroxy nitrates | CIMS | NO as the limiting factor for ambient IN production during SOAS | [ |
September~November, 2010 | Hong Kong, China | Remote/Urban | C1~C4 AN | GC-ECD | Secondary formation was the prominent contributor of ANs in the meso scenario, while biomass burning and secondary formation made comparable contributions to ANs in the nonmeso scenario | [ |
June~July, 2013 | Bibb County, Alabama, USA | Rural | ANs | TD-LIF | The lifetime of NOx during the daytime is controlled primarily by the production and loss of ANs which were predominantly produced during isoprene oxidation | [ |
August~September, 2011 | Kleiner Feldberg, Germany | Rural | ANs | TD-CRDS | A significant fraction of NOx (up to 75%) is sequestered as organics nitrates, and the night-time production of alkyl nitrates by reaction of NO3 with biogenic hydrocarbons is comparable to that from daytime OH-initiated oxidation pathways | [ |
May, August, November, 2011; February, 2012 | Hong Kong, China | Suburban | C1~C4 AN | GC-ECD | The photochemical formation and biomass burning were the major sources of C2~C4 RONO2, whereas MeONO2 was mainly from oceanic emissions during the entire sampling period | [ |
June, 2005/July, 2008 | Beijing, China | Urban/Rural | C1~C5 AN | GC-ECD/MSD | The mixing ratios of RONO2 were comparable between both sites, emphasizing the regional nature of alkyl nitrate pollution | [ |
February~April, June~July, 2017 | Yellow River Delta, China | Rural | C1~C5 AN | GC-ECD/MSD | Alkyl nitrates showed well-defined diurnal variations, elucidating the effects of in-situ photochemical production and regional transport of aged polluted plumes | [ |
December, 2012~December, 2015 | Suzu, Japan | Remote | ANs | TD-CAPS | PNs and ONs showed similar seasonal variations with maximum concentrations in spring and minimum concentrations in summer | [ |
May~June, 2017 | Beijing, China | Urban | Isoprene nitrates | GC-NI-MS | In the summertime conditions experienced in Beijing the ratio of (1-OH, 2-ONO2) IHN to (4-OH, 3-ONO2)-IHN (the numbers indicate the carbon atom in the isoprene chain to which the radical is added) increases at NO mixing ratios below 2 nL/L | [ |
August~September, 2019 | Chengdu, China | Suburban | ANs | TD-CEAS | The production of both O3 and ANs was in the VOC-limited regime and highlights the importance of VOC control (especially aromatics) to mitigate photochemical pollution in Chengdu | [ |
[1] |
Day, D. A.; Dillon, M. B.; Wooldridge, P. J.; Thornton, J. A.; Rosen, R. S.; Wood, E. C.; Cohen, R. C. J. Geophys. Res.: Atmos. 2003, 108, 4501.
|
[2] |
Rosen, R. S.; Wood, E. C.; Wooldridge, P. J.; Thornton, J. A.; Day, D. A.; Kuster, W.; Williams, E. J.; Jobson, B. T.; Cohen, R. C. J. Geophys. Res.: Atmos. 2004, 109, 15.
|
[3] |
Farmer, D. K.; Perring, A. E.; Wooldridge, P. J.; Blake, D. R.; Baker, A.; Meinardi, S.; Huey, L. G.; Tanner, D.; Vargas, O.; Cohen, R. C. Atmos. Chem. Phys. 2011, 11, 4085.
doi: 10.5194/acp-11-4085-2011 |
[4] |
Browne, E. C.; Cohen, R. C. Atmos. Chem. Phys. 2012, 12, 11917.
doi: 10.5194/acp-12-11917-2012 |
[5] |
Aruffo, E.; Di Carlo, P.; Dari-Salisburgo, C.; Biancofiore, F.; Giammaria, F.; Busilacchio, M.; Lee, J.; Moller, S.; Hopkins, J.; Punjabi, S.; Bauguitte, S.; O'Sullivan, D.; Percival, C.; Le Breton, M.; Muller, J.; Jones, R.; Forster, G.; Reeves, C.; Heard, D.; Walker, H.; Ingham, T.; Vaughan, S.; Stone, D. Atmos. Environ. 2014, 94, 479.
doi: 10.1016/j.atmosenv.2014.05.040 |
[6] |
Chen, X.; Wang, H.; Lu, K. Sci. China: Earth Sci. 2018, 61, 228.
doi: 10.1007/s11430-017-9115-5 |
[7] |
Ling, Z. H.; Guo, H.; Simpson, I. J.; Saunders, S. M.; Lam, S. H. M.; Lyu, X. P.; Blake, D. R. Atmos. Chem. Phys. 2016, 16, 8141.
doi: 10.5194/acp-16-8141-2016 |
[8] |
Li, C.; Wang, H.; Chen, X.; Zhai, T.; Ma, X.; Yang, X.; Chen, S.; Li, X.; Zeng, L.; Lu, K. Sci. Total Environ. 2023, 859, 160287.
doi: 10.1016/j.scitotenv.2022.160287 |
[9] |
Horowitz, L. W.; Fiore, A. M.; Milly, G. P.; Cohen, R. C.; Perring, A.; Wooldridge, P. J.; Hess, P. G.; Emmons, L. K.; Lamarque, J. F. J. Geophys. Res.: Atmos. 2007, 112, 13.
|
[10] |
Li, J. Y.; Mao, J. Q.; Fiore, A. M.; Cohen, R. C.; Crounse, J. D.; Teng, A.P.; Wennberg, P.O.; Lee, B.H.; Lopez-Hilfiker, F.D.; Thornton, J. A.; Peischl, J.; Pollack, I. B.; Ryerson, T. B.; Veres, P.; Roberts, J. M.; Neuman, J. A.; Nowak, J. B.; Wolfe, G. M.; Hanisco, T. F.; Fried, A.; Singh, H. B.; Dibb, J.; Paulot, F.; Horowitz, L. W. Atmos. Chem. Phys. 2018, 18, 2341.
doi: 10.5194/acp-18-2341-2018 |
[11] |
Fry, J. L.; Draper, D. C.; Zarzana, K. J.; Campuzano-Jost, P.; Day, D. A.; Jimenez, J. L.; Brown, S. S.; Cohen, R. C.; Kaser, L.; Hansel, A.; Cappellin, L.; Karl, T.; Roux, A. H.; Turnipseed, A.; Cantrell, C.; Lefer, B. L.; Grossberg, N. Atmos. Chem. Phys. 2013, 13, 8585.
doi: 10.5194/acp-13-8585-2013 |
[12] |
Rollins, A. W.; Browne, E. C.; Min, K. E.; Pusede, S. E.; Wooldridge, P. J.; Gentner, D. R.; Goldstein, A. H.; Liu, S.; Day, D. A.; Russell, L. M.; Cohen, R. C. Science 2012, 337, 1210.
doi: 10.1126/science.1221520 pmid: 22955831 |
[13] |
Sun, Y. L.; Zhang, Q.; Schwab, J. J.; Yang, T.; Ng, N. L.; Demerjian, K. L. Atmos. Chem. Phys. 2012, 12, 8537.
doi: 10.5194/acp-12-8537-2012 |
[14] |
Xu, L.; Suresh, S.; Guo, H.; Weber, R. J.; Ng, N. L. Atmos. Chem. Phys. 2015, 15, 7307.
doi: 10.5194/acp-15-7307-2015 |
[15] |
Yu, K.; Zhu, Q.; Du, K.; Huang, X.-F. Atmos. Chem. Phys. 2019, 19, 5235.
doi: 10.5194/acp-19-5235-2019 |
[16] |
Perring, A. E.; Pusede, S. E.; Cohen, R. C. Chem. Rev. 2013, 113, 5848.
doi: 10.1021/cr300520x pmid: 23614613 |
[17] |
Yang, X. P.; Wang, H. C.; Tan, Z. F.; Lu, K. D.; Zhang, Y. H. Acta Chim. Sinica 2019, 77, 613 (in Chinese).
doi: 10.6023/A19030094 |
(杨新平, 王海潮, 谭照峰, 陆克定, 张远航, 化学学报, 2019, 77, 613.)
doi: 10.6023/A19030094 |
|
[18] |
Schneider, M.; Luxenhofer, O.; Deissler, A.; Ballschmiter, K. Environ. Sci. Technol. 1998, 32, 3055.
doi: 10.1021/es980132g |
[19] |
Flocke, F.; Volz-Thomas, A.; Buers, H. J.; Patz, W.; Garthe, H. J.; Kley, D. J. Geophys. Res.: Atmos. 1998, 103, 5729.
|
[20] |
Singh, H. B.; Herlth, D.; Kolyer, R.; Salas, L.; Bradshaw, J. D.; Sandholm, S. T.; Davis, D. D.; Crawford, J.; Kondo, Y.; Koike, M.; Talbot, R.; Gregory, G.L.; Sachse, G. W.; Browell, E.; Blake, D. R.; Rowland, F. S.; Newell, R.; Merrill, J.; Heikes, B.; Liu, S. C.; Crutzen, P. J.; Kanakidou, M. J. Geophys. Res.: Atmos. 1996, 101, 1793.
|
[21] |
Shepson, P. B.; Anlauf, K. G.; Bottenheim, J. W.; Wiebe, H. A.; Gao, N.; Muthuramu, K.; Mackay, G. I. Atmos. Environ.,Part A 1993, 27, 749.
doi: 10.1016/0960-1686(93)90192-2 |
[22] |
Atlas, E.; Schauffler, S. M.; Merrill, J. T.; Hahn, C. J.; Ridley, B.; Walega, J.; Greenberg, J.; Heidt, L.; Zimmerman, P. J. Geophys. Res.: Atmos. 1992, 97, 10331.
|
[23] |
Buhr, M. P.; Parrish, D. D.; Norton, R. B.; Fehsenfeld, F. C.; Sievers, R. E.; Roberts, J. M. J. Geophys. Res.: Atmos. 1990, 95, 9809.
|
[24] |
Thieser, J.; Schuster, G.; Schuladen, J.; Phillips, G. J.; Reiffs, A.; Parchatka, U.; Pohler, D.; Lelieveld, J.; Crowley, J. N. Atmos. Meas. Tech. 2016, 9, 553.
doi: 10.5194/amt-9-553-2016 |
[25] |
Zare, A.; Romer, P. S.; Tran, N.; Keutsch, F. N.; Skog, K.; Cohen, R. C. Atmos. Chem. Phys. 2018, 18, 15419.
doi: 10.5194/acp-18-15419-2018 |
[26] |
Travis, K. R.; Jacob, D. J.; Fisher, J. A.; Kim, P. S.; Marais, E. A.; Zhu, L.; Yu, K.; Miller, C. C.; Yantosca, R. M.; Sulprizio, M. P.; Thompson, A. M.; Wennberg, P. O.; Crounse, J. D.; St Clair, J. M.; Cohen, R. C.; Laughner, J. L.; Dibb, J. E.; Hall, S. R.; Ullmann, K.; Wolfe, G. M.; Pollack, I. B.; Peischl, J.; Neuman, J. A.; Zhou, X. Atmos. Chem. Phys. 2016, 16, 13561.
doi: 10.5194/acp-16-13561-2016 |
[27] |
Fisher, J. A.; Jacob, D. J.; Travis, K. R.; Kim, P. S.; Marais, E. A.; Miller, C. C.; Yu, K.; Zhu, L.; Yantosca, R. M.; Sulprizio, M. P.; Mao, J.; Wennberg, P. O.; Crounse, J. D.; Teng, A. P.; Nguyen, T. B.; St Clair, J. M.; Cohen, R. C.; Romer, P.; Nault, B. A.; Wooldridge, P. J.; Jimenez, J. L.; Campuzano-Jost, P.; Day, D. A.; Hu, W.; Shepson, P. B.; Xiong, F.; Blake, D. R.; Goldstein, A. H.; Misztal, P. K.; Hanisco, T. F.; Wolfe, G. M.; Ryerson, T. B.; Wisthaler, A.; Mikoviny, T. Atmos. Chem. Phys. 2016, 16, 5969.
doi: 10.5194/acp-16-5969-2016 pmid: 29681921 |
[28] |
Sobanski, N.; Thieser, J.; Schuladen, J.; Sauvage, C.; Song, W.; Williams, J.; Lelieveld, J.; Crowley, J.N. Atmos. Chem. Phys. 2017, 17, 4115.
doi: 10.5194/acp-17-4115-2017 |
[29] |
Reisen, F.; Aschmann, S. M.; Atkinson, R.; Arey, J. Environ. Sci. Technol. 2005, 39, 4447.
doi: 10.1021/es0483589 |
[30] |
Arey, J.; Aschmann, S. M.; Kwok, E. S. C.; Atkinson, R. J. Phys. Chem. A 2001, 105, 1020.
doi: 10.1021/jp003292z |
[31] |
Wennberg, P. O.; Bates, K. H.; Crounse, J. D.; Dodson, L. G.; McVay, R. C.; Mertens, L. A.; Nguyen, T. B.; Praske, E.; Schwantes, R. H.; Smarte, M. D.; St Clair, J. M.; Teng, A. P.; Zhang, X.; Seinfeld, J. H. Chem. Rev. 2018, 118, 3337.
doi: 10.1021/acs.chemrev.7b00439 pmid: 29522327 |
[32] |
Russell, M.; Allen, D. T. J. Geophys. Res.: Atmos. 2005, 110, D07S17.
|
[33] |
Elrod, M. J. J. Phys. Chem. A 2011, 115, 8125.
doi: 10.1021/jp204308f |
[34] |
Aschmann, S. M. J. Geophys. Res. 2002, 107, 4191.
|
[35] |
Rindelaub, J. D.; McAvey, K. M.; Shepson, P. B. Atmos. Environ. 2015, 100, 193.
doi: 10.1016/j.atmosenv.2014.11.010 |
[36] |
Ng, N. L.; Brown, S. S.; Archibald, A. T.; Atlas, E.; Cohen, R. C.; Crowley, J. N.; Day, D. A.; Donahue, N. M.; Fry, J. L.; Fuchs, H.; Griffin, R. J.; Guzman, M. I.; Herrmann, H.; Hodzic, A.; Iinuma, Y.; Jimenez, J. L.; Kiendler-Scharr, A.; Lee, B. H.; Luecken, D. J.; Mao, J. Q.; McLaren, R.; Mutzel, A.; Osthoff, H. D.; Ouyang, B.; Picquet-Varrault, B.; Platt, U.; Pye, H. O. T.; Rudich, Y.; Schwantes, R. H.; Shiraiwa, M.; Stutz, J.; Thornton, J. A.; Tilgner, A.; Williams, B. J.; Zaveri, R. A. Atmos. Chem. Phys. 2017, 17, 2103.
doi: 10.5194/acp-17-2103-2017 |
[37] |
Ng, N. L.; Brown, S. S.; Archibald, A. T.; Atlas, E.; Cohen, R. C.; Crowley, J. N.; Day, D. A.; Donahue, N. M.; Fry, J. L.; Fuchs, H.; Griffin, R. J.; Guzman, M. I.; Herrmann, H.; Hodzic, A.; Iinuma, Y.; Jimenez, J. L.; Kiendler-Scharr, A.; Lee, B. H.; Luecken, D. J.; Mao, J.; McLaren, R.; Mutzel, A.; Osthoff, H. D.; Ouyang, B.; Picquet-Varrault, B.; Platt, U.; Pye, H. O. T.; Rudich, Y.; Schwantes, R. H.; Shiraiwa, M.; Stutz, J.; Thornton, J. A.; Tilgner, A.; Williams, B. J.; Zaveri, R. A. Atmos. Chem. Phys. 2017, 17, 2103.
doi: 10.5194/acp-17-2103-2017 |
[38] |
Farmer, D. K.; Cohen, R. C. Atmos. Chem. Phys. 2008, 8, 3899.
doi: 10.5194/acp-8-3899-2008 |
[39] |
Nguyen, T. B.; Crounse, J. D.; Teng, A. P.; St Clair, J. M.; Paulot, F.; Wolfe, G. M.; Wennberg, P. O. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, E392.
|
[40] |
Brewer, J. F.; Jacob, D. J.; Jathar, S. H.; He, Y.; Akherati, A.; Zhai, S.; Jo, D. S.; Hodzic, A.; Nault, B. A.; Campuzano-Jost, P.; Jimenez, J. L.; Park, R. J.; Oak, Y. J.; Liao, H. J. Geophys. Res.: Atmos. 2023, 12, e2022JD037257.
|
[41] |
Xu, L.; Moller, K. H.; Crounse, J. D.; Kjaergaard, H. G.; Wennberg, P. O. Environ. Sci. Technol. 2020, 54, 13467.
doi: 10.1021/acs.est.0c04780 |
[42] |
Place, B. K.; Hutzell, W. T.; Appel, K. W.; Farrell, S.; Valin, L.; Murphy, B. N.; Seltzer, K. M.; Sarwar, G.; Allen, C.; Piletic, I. R.; D'Ambro, E. L.; Saunders, E.; Simon, H.; Torres-Vasquez, A.; Pleim, J.; Schwantes, R. H.; Coggon, M. M.; Xu, L.; Stockwell, W. R.; Pye, H. O. T. Atmos. Chem. Phys. 2023, 23, 9173.
doi: 10.5194/acp-23-9173-2023 |
[43] |
Paulot, F.; Crounse, J. D.; Kjaergaard, H. G.; Kroll, J. H.; Seinfeld, J. H.; Wennberg, P. O. Atmos. Chem. Phys. 2009, 9, 1479.
doi: 10.5194/acp-9-1479-2009 |
[44] |
Carbajo, P. G.; Orr-Ewing, A. J. Phys. Chem. Chem. Phys. 2010, 12, 6084.
doi: 10.1039/c001425g |
[45] |
Luke, W. T.; Dickerson, R. R.; Nunnermacker, L. J. J. Geophys. Res.: Atmos. 1989, 94, 14905.
|
[46] |
Turberg, M. P.; Giolando, D. M.; Tilt, C.; Soper, T.; Mason, S.; Davies, M.; Klingensmith, P.; Takacs, G. A. J. Photochem. Photobiol.,A 1990, 51, 281.
doi: 10.1016/1010-6030(90)87063-H |
[47] |
Zhu, L.; Kellis, D. Chem Phys Lett 1997, 278, 41.
doi: 10.1016/S0009-2614(97)01011-7 |
[48] |
Barnes, I.; Becker, K. H.; Zhu, T. J. Atmos. Chem. 1993, 17, 353.
doi: 10.1007/BF00696854 |
[49] |
Roberts, J. M.; Fajer, R. W. Environ. Sci. Technol. 1989, 23, 945.
doi: 10.1021/es00066a003 |
[50] |
Suarez-Bertoa, R.; Picquet-Varrault, B.; Tamas, W.; Pangui, E.; Doussin, J. F. Environ. Sci. Technol. 2012, 46, 12502.
doi: 10.1021/es302613x |
[51] |
Horowitz, L. W.; Fiore, A. M.; Milly, G. P.; Cohen, R. C.; Perring, A.; Wooldridge, P. J.; Hess, P. G.; Emmons, L. K.; Lamarque, J.-F. J. Geophys. Res.: Atmos. 2007, 112, D12S08..
|
[52] |
Browne, E. C.; Wooldridge, P. J.; Min, K. E.; Cohen, R. C. Atmos. Chem. Phys. 2014, 14, 1225.
doi: 10.5194/acp-14-1225-2014 |
[53] |
Hao, C. S.; Shepson, P. B.; Drummond, J. W.; Muthuramu, K. Anal. Chem. 1994, 66, 3737.
doi: 10.1021/ac00093a032 |
[54] |
Beine, H. J.; Jaffe, D. A.; Blake, D. R.; Atlas, E.; Harris, J. J. Geophys. Res.: Atmos. 1996, 101, 12613.
|
[55] |
Fukui, Y.; Doskey, P. V. HRC & CC, J. High Resolut. Chromatogr. Chromatogr. Commun. 1998, 21, 201.
|
[56] |
Day, D. A.; Wooldridge, P. J.; Dillon, M. B.; Thornton, J. A.; Cohen, R. C. J. Geophys. Res.: Atmos. 2002, 107, 4046.
|
[57] |
Beaver, M. R.; St Clair, J. M.; Paulot, F.; Spencer, K. M.; Crounse, J. D.; LaFranchi, B. W.; Min, K. E.; Pusede, S. E.; Wooldridge, P. J.; Schade, G. W.; Park, C.; Cohen, R. C.; Wennberg, P. O. Atmos. Chem. Phys. 2012, 12, 5773.
doi: 10.5194/acp-12-5773-2012 |
[58] |
Mills, G. P.; Hiatt-Gipson, G. D.; Bew, S. P.; Reeves, C. E. Atmos. Meas. Tech. 2016, 9, 4533.
doi: 10.5194/amt-9-4533-2016 |
[59] |
Sadanaga, Y.; Takaji, R.; Ishiyama, A.; Nakajima, K.; Matsuki, A.; Bandow, H. Rev. Sci. Instrum. 2016, 87, 074102.
doi: 10.1063/1.4958167 |
[60] |
Sobanski, N.; Schuladen, J.; Schuster, G.; Lelieveld, J.; Crowley, J. N. Atmos. Meas. Tech. 2016, 9, 5103.
doi: 10.5194/amt-9-5103-2016 |
[61] |
Li, C.; Wang, H.; Chen, X.; Zhai, T.; Chen, S.; Li, X.; Zeng, L.; Lu, K. Atmos. Meas. Tech. 2021, 14, 4033.
doi: 10.5194/amt-14-4033-2021 |
[62] |
Atlas, E. Nature 1988, 331, 426.
doi: 10.1038/331426a0 |
[63] |
Flocke, F. M.; Weinheimer, A. J.; Swanson, A. L.; Roberts, J. M.; Schmitt, R.; Shertz, S. J. Atmos. Chem. 2005, 52, 19.
doi: 10.1007/s10874-005-6772-0 |
[64] |
Luxenhofer, O.; Schneider, E.; Ballschmiter, K. Fresenius J. Anal. Chem. 1994, 350, 384.
doi: 10.1007/BF00325611 |
[65] |
Patchen, A. K.; Pennino, M. J.; Kiep, A. C.; Elrod, M. J. Int. J. Chem. Kinet. 2007, 39, 353.
doi: 10.1002/kin.v39:6 |
[66] |
Lee, L.; Wooldridge, P. J.; deGouw, J.; Brown, S. S.; Bates, T. S.; Quinn, P. K.; Cohen, R. C. Atmos. Chem. Phys. 2015, 15, 9313.
doi: 10.5194/acp-15-9313-2015 |
[67] |
Romer, P. S.; Duffey, K. C.; Wooldridge, P. J.; Allen, H. M.; Ayres, B. R.; Brown, S. S.; Brune, W. H.; Crounse, J. D.; de Gouw, J.; Draper, D. C.; Feiner, P. A.; Fry, J. L.; Goldstein, A. H.; Koss, A.; Misztal, P. K.; Nguyen, T. B.; Olson, K.; Teng, A. P.; Wennberg, P. O.; Wild, R. J.; Zhang, L.; Cohen, R. C. Atmos. Chem. Phys. 2016, 16, 7623.
doi: 10.5194/acp-16-7623-2016 |
[68] |
Thornton, J. A.; Wooldridge, P. J.; Cohen, R. C. Anal. Chem. 2000, 72, 528.
pmid: 10695138 |
[69] |
Paul, D.; Furgeson, A.; Osthoff, H. D. Rev. Sci. Instrum. 2009, 80, 114101.
doi: 10.1063/1.3258204 |
[70] |
Wooldridge, P. J.; Perring, A. E.; Bertram, T. H.; Flocke, F. M.; Roberts, J. M.; Singh, H. B.; Huey, L. G.; Thornton, J. A.; Wolfe, G. M.; Murphy, J. G.; Fry, J. L.; Rollins, A. W.; LaFranchi, B. W.; Cohen, R. C. Atmos. Meas. Tech. 2010, 3, 593.
doi: 10.5194/amt-3-593-2010 |
[71] |
Womack, C. C.; Neuman, J. A.; Veres, P. R.; Eilerman, S. J.; Brock, C. A.; Decker, Z. C. J.; Zarzana, K. J.; Dube, W. P.; Wild, R. J.; Wooldridge, P. J.; Cohen, R. C.; Brown, S. S. Atmos. Meas. Tech. 2017, 10, 1911.
doi: 10.5194/amt-10-1911-2017 |
[72] |
Taha, Y. M.; Saowapon, M. T.; Assad, F. V.; Ye, C. Z.; Chen, X. N.; Garner, N. M.; Osthoff, H. D. Atmos. Meas. Tech. 2018, 11, 4109.
doi: 10.5194/amt-11-4109-2018 |
[73] |
Li, W.; Huang, S.; Yuan, B.; Guo, S.; Shao, M. China Environ. Sci. 2021, 41, 3017 (in Chinese).
|
(李伟, 黄山, 袁斌, 郭松, 邵敏, 中国环境科学, 2021, 41, 3017.)
|
|
[74] |
Gu, F. T.; Hu, M.; Zheng, J.; Guo, S. Prog. Chem. 2017, 29, 962 (in Chinese).
|
(顾芳婷, 胡敏, 郑竞, 郭松, 化学进展, 2017, 29, 962.)
doi: 10.7536/PC170324 |
|
[75] |
Day, D. A.; Liu, S.; Russell, L. M.; Ziemann, P. J. Atmos. Environ. 2010, 44, 1970.
doi: 10.1016/j.atmosenv.2010.02.045 |
[76] |
Lee, B. H.; Mohr, C.; Lopez-Hilfiker, F. D.; Lutz, A.; Hallquist, M.; Lee, L.; Romer, P.; Cohen, R. C.; Iyer, S.; Kurten, T.; Hu, W.; Day, D. A.; Campuzano-Jost, P.; Jimenez, J. L.; Xu, L.; Ng, N. L.; Guo, H.; Weber, R. J.; Wild, R. J.; Brown, S. S.; Koss, A.; de Gouw, J.; Olson, K.; Goldstein, A. H.; Seco, R.; Kim, S.; McAvey, K.; Shepson, P. B.; Starn, T.; Baumann, K.; Edgerton, E. S.; Liu, J.; Shilling, J. E.; Miller, D. O.; Brune, W.; Schobesberger, S.; D'Ambro, E. L.; Thornton, J. A. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 1516.
doi: 10.1073/pnas.1508108113 |
[77] |
He, Q.-F.; Ding, X.; Wang, X.-M.; Yu, J.-Z.; Fu, X.-X.; Liu, T.-Y.; Zhang, Z.; Xue, J.; Chen, D.-H.; Zhong, L.-J.; Donahue, N. M. Environ. Sci. Technol. 2014, 48, 9236.
doi: 10.1021/es501299v |
[78] |
Simpson, I. J.; Akagi, S. K.; Barletta, B.; Blake, N. J.; Choi, Y.; Diskin, G. S.; Fried, A.; Fuelberg, H. E.; Meinardi, S.; Rowland, F. S.; Vay, S. A.; Weinheimer, A. J.; Wennberg, P. O.; Wiebring, P.; Wisthaler, A.; Yang, M.; Yokelson, R. J.; Blake, D. R. Atmos. Chem. Phys. 2011, 11, 6445.
doi: 10.5194/acp-11-6445-2011 |
[79] |
Kastler, J.; Jarman, W.; Ballschmiter, K. Fresenius J. Anal. Chem. 2000, 368, 244.
pmid: 11220587 |
[80] |
Schneider, M.; Ballschmiter, K. Chemosphere 1999, 38, 233.
pmid: 10903102 |
[81] |
Perring, A. E.; Bertram, T. H.; Farmer, D. K.; Wooldridge, P. J.; Dibb, J.; Blake, N. J.; Blake, D. R.; Singh, H. B.; Fuelberg, H.; Diskin, G.; Sachse, G.; Cohen, R. C. Atmos. Chem. Phys. 2010, 10, 7215.
doi: 10.5194/acp-10-7215-2010 |
[82] |
Chen, X. R.; Wang, H. C.; Lu, K. D. Sci. Sin. Terrae 2018, 48, 366 (in Chinese).
doi: 10.1360/N072017-00120 |
(陈肖睿, 王海潮, 陆克定, 中国科学:地球科学, 2018, 48, 366.)
|
|
[83] |
Lee, L.; Wooldridge, P. J.; Gilman, J. B.; Warneke, C.; de Gouw, J.; Cohen, R. C. Atmos. Chem. Phys. 2014, 14, 12441.
doi: 10.5194/acp-14-12441-2014 |
[84] |
Browne, E. C.; Min, K. E.; Wooldridge, P. J.; Apel, E.; Blake, D. R.; Brune, W. H.; Cantrell, C. A.; Cubison, M. J.; Diskin, G. S.; Jimenez, J. L.; Weinheimer, A. J.; Wennberg, P. O.; Wisthaler, A.; Cohen, R. C. Atmos. Chem. Phys. 2013, 13, 4543.
doi: 10.5194/acp-13-4543-2013 |
[85] |
Grossenbacher, J. W.; Couch, T.; Shepson, P. B.; Thornberry, T.; Witmer-Rich, M.; Carroll, M. A.; Faloona, I.; Tan, D.; Brune, W.; Ostling, K.; Bertman, S. J. Geophys. Res.: Atmos. 2001, 106, 24429.
|
[86] |
Lockwood, A. L.; Shepson, P. B.; Fiddler, M. N.; Alaghmand, M. Atmos. Chem. Phys. 2010, 10, 6169.
doi: 10.5194/acp-10-6169-2010 |
[87] |
Sprengnether, M.; Demerjian, K. L.; Donahue, N. M.; Anderson, J. G. J. Geophys. Res.: Atmos. 2002, 107, 4268.
|
[88] |
Tuazon, E. C.; Atkinson, R. Int. J. Chem. Kinet. 1990, 22, 1221.
doi: 10.1002/kin.v22:12 |
[89] |
Chen, X. H.; Hulbert, D.; Shepson, P. B. J. Geophys. Res.: Atmos. 1998, 103, 25563.
|
[90] |
Lee, L.; Teng, A. P.; Wennberg, P. O.; Crounse, J. D.; Cohen, R. C. J. Phys. Chem. A 2014, 118, 1622.
doi: 10.1021/jp4107603 |
[91] |
Rollins, A. W.; Fry, J. L.; Kiendler-Scharr, A.; Wooldridge, P. J.; Brown, S. S.; Fuchs, H.; Dube, W. P.; Mensah, A.; Tillmann, R.; Dorn, H. P.; Brauers, T.; Cohen, R. C. Atmos. Chem. Phys. 2009, 237, 288.
|
[92] |
Xiong, F.; McAvey, K. M.; Pratt, K. A.; Groff, C. J.; Hostetler, M. A.; Lipton, M. A.; Starn, T. K.; Seeley, J. V.; Bertman, S. B.; Teng, A. P.; Crounse, J. D.; Nguyen, T. B.; Wennberg, P. O.; Misztal, P. K.; Goldstein, A. H.; Guenther, A. B.; Koss, A. R.; Olson, K. F.; de Gouw, J. A.; Baumann, K.; Edgerton, E. S.; Feiner, P. A.; Zhang, L.; Miller, D. O.; Brune, W. H.; Shepson, P. B. Atmos. Chem. Phys. 2015, 15, 11257.
doi: 10.5194/acp-15-11257-2015 |
[93] |
Reeves, C. E.; Mills, G. P.; Whalley, L. K.; Acton, W. J. F.; Bloss, W. J.; Crilley, L. R.; Grimmond, S.; Heard, D. E.; Hewitt, C. N.; Hopkins, J. R.; Kotthaus, S.; Kramer, L. J.; Jones, R. L.; Lee, J. D.; Liu, Y.; Ouyang, B.; Slater, E.; Squires, F.; Wang, X.; Woodward-Massey, R.; Ye, C. Atmos. Chem. Phys. 2021, 21, 6315.
doi: 10.5194/acp-21-6315-2021 |
[94] |
Obrien, J. M.; Shepson, P. B.; Muthuramu, K.; Hao, C.; Niki, H.; Hastie, D. R.; Taylor, R.; Roussel, P. B. J. Geophys. Res.: Atmos. 1995, 100, 22795.
|
[95] |
Roberts, J. M.; Williams, J.; Baumann, K.; Buhr, M. P.; Goldan, P. D.; Holloway, J.; Hubler, G.; Kuster, W. C.; McKeen, S. A.; Ryerson, T. B.; Trainer, M.; Williams, E. J.; Fehsenfeld, F. C.; Bertman, S. B.; Nouaime, G.; Seaver, C.; Grodzinsky, G.; Rodgers, M.; Young, V. L. J. Geophys. Res.: Atmos. 1998, 103, 22473.
|
[96] |
Fischer, R. G.; Kastler, J.; Ballschmiter, K. J. Geophys. Res.: Atmos. 2000, 105, 14473.
|
[97] |
Fischer, R.; Weller, R.; Jacobi, H. W.; Ballschmiter, K. Chemosphere 2002, 48, 981.
pmid: 12222794 |
[98] |
Murphy, J. G.; Day, A.; Cleary, P. A.; Wooldridge, P. J.; Cohen, R. C. Atmos. Chem. Phys. 2006, 6, 5321.
doi: 10.5194/acp-6-5321-2006 |
[99] |
Simpson, I. J.; Wang, T.; Guo, H.; Kwok, Y. H.; Flocke, F.; Atlas, E.; Meinardi, S.; Rowland, F. S.; Blake, D. R. Atmos. Environ. 2006, 40, 1619.
doi: 10.1016/j.atmosenv.2005.10.062 |
[100] |
Reeves, C. E.; Slemr, J.; Oram, D. E.; Worton, D.; Penkett, S. A.; Stewart, D. J.; Purvis, R.; Watson, N.; Hopkins, J.; Lewis, A.; Methven, J.; Blake, D. R.; Atlas, E. J. Geophys. Res.: Atmos. 2007, 112, D10S37..
|
[101] |
Singh, H. B.; Salas, L.; Herlth, D.; Kolyer, R.; Czech, E.; Avery, M.; Crawford, J. H.; Pierce, R. B.; Sachse, G. W.; Blake, D. R.; Cohen, R. C.; Bertram, T. H.; Perring, A.; Wooldridge, P. J.; Dibb, J.; Huey, G.; Hudman, R. C.; Turquety, S.; Emmons, L. K.; Flocke, F.; Tang, Y.; Carmichael, G. R.; Horowitz, L.W. J. Geophys. Res.: Atmos. 2007, 112, D12S04.
|
[102] |
Wang, M.; Shao, M.; Chen, W.; Lu, S.; Wang, C.; Huang, D.; Yuan, B.; Zeng, L.; Zhao, Y. Atmos. Environ. 2013, 81, 389.
doi: 10.1016/j.atmosenv.2013.08.065 |
[103] |
Song, J.; Zhang, Y.; Huang, Y.; Ho, K. F.; Yuan, Z.; Ling, Z.; Niu, X.; Gao, Y.; Cui, L.; Louie, P. K. K.; Lee, S.-C.; Lai, S. Chemosphere 2018, 194, 275.
doi: 10.1016/j.chemosphere.2017.11.104 |
[104] |
Sun, J.; Li, Z.; Xue, L.; Wang, T.; Wang, X.; Gao, J.; Nie, W.; Simpson, I. J.; Gao, R.; Blake, D. R.; Chai, F.; Wang, W. Atmos. Res. 2018, 204, 102.
doi: 10.1016/j.atmosres.2018.01.014 |
[105] |
Zhang, Y.; Sun, J.; Zheng, P.; Chen, T.; Liu, Y.; Han, G.; Simpson, I.J.; Wang, X.; Blake, D.R.; Li, Z.; Yang, X.; Qi, Y.; Wang, Q.; Wang, W.; Xue, L. Sci. Total Environ. 2018, 656, 129.
doi: 10.1016/j.scitotenv.2018.11.208 |
[106] |
Sadanaga, Y.; Ishiyama, A.; Takaji, R.; Matsuki, A.; Kato, S.; Sato, K.; Osada, K.; Bandow, H. Atmos. Environ. 2019, 196, 20.
doi: 10.1016/j.atmosenv.2018.10.003 |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||