化学学报 ›› 2024, Vol. 82 ›› Issue (4): 449-457.DOI: 10.6023/A23120541 上一篇    下一篇

综述

用于锂金属电池的聚合物固态电解质的研究进展

谷琪, 刘夏夏, 周鑫宇, 李江, 林秀婧*(), 马延文*()   

  1. 南京邮电大学信息材料与纳米技术研究院 有机电子与信息显示国家重点实验室 南京 210023
  • 投稿日期:2023-12-25 发布日期:2024-03-21
  • 作者简介:

    谷琪, 就读于南京邮电大学材料科学与工程学院, 2021级电子信息专业硕士生. 主要研究方向为聚离子液体基固态电解质的制备及其在锂金属电池中的应用.

    刘夏夏, 就读于南京邮电大学材料科学与工程学院, 2022级电子信息专业硕士生. 主要研究方向为聚离子液体基固态电解质的制备及其在锂金属电池中的应用.

    周鑫宇, 就读于南京邮电大学材料科学与工程学院, 2022级电子信息专业硕士生. 主要研究方向为聚离子液体基固态电解质的制备及其在锂硫电池中的应用.

    李江, 就读于南京邮电大学材料科学与工程学院, 2022级电子信息专业硕士生. 主要研究方向为硅负极粘结剂的制备及其在锂电池中的应用.

    林秀婧, 2015年博士毕业于复旦大学物理化学专业, 现任南京邮电大学材料科学与工程学院副教授. 主要研究方向为聚离子液体基高分子聚合物的设计合成及应用.

    马延文, 2007年博士毕业于南京大学物理化学专业, 现任苏州工业职业技术学院院长、南京邮电大学材料科学与工程学院纳米材料研究所所长, 入选江苏省“333工程”第三层次培养对象、江苏省六大人才高峰(A类)、“青蓝工程”学术带头人. 长期致力于柔性能源电子器件、锂/钠离子电池和碱金属电池的研究和产业化应用.

  • 基金资助:
    中国博士后科学基金(2020M681682); 有机电子与信息显示国家重点实验室资助项目(GZR2023010002); 南京邮电大学校级自然科学基金(NY222150)

Recent Progress on Polymer Solid Electrolytes for Lithium Metal Batteries

Qi Gu, Xiaxia Liu, Xinyu Zhou, Jiang Li, Xiujing Lin*(), Yanwen Ma*()   

  1. State Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023
  • Received:2023-12-25 Published:2024-03-21
  • Contact: * E-mail: iamxjlin@njupt.edu.cn; iamywma@njupt.edu.cn; Tel.: 025-85866353
  • Supported by:
    China Postdoctoral Science Foundation(2020M681682); State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications(GZR2023010002); Natural Science Foundation of Nanjing University of Posts and Telecommunications(NY222150)

聚合物固态电解质因其质轻安全、结构可设计以及优异的机械性能, 成为高能量密度、高安全性全固态电池的潜在材料, 逐渐成为研究的重点. 但因其结晶度高、室温离子电导率低等缺陷也限制其进一步商业化. 本综述梳理了近年来比较优越的聚合物固态电解质种类, 包括聚醚类聚合物、聚碳酸酯类聚合物、氟化聚合物、聚离子液体聚合物、单离子传导聚合物, 围绕如何提升离子电导率, 重点回顾了针对不同基质的结构设计和合成工艺方面的创新. 最后阐述了聚合物固态电解质目前面临的基础研究和应用问题, 以期为新型聚合物固态电解质的设计与制备提供新思路.

关键词: 锂金属电池, 固态电解质, 聚合物电解质, 结构设计, 合成工艺

Lithium metal is considered an ideal negative electrode material for its highest theoretical specific capacity and lowest redox potential. However, traditional lithium metal batteries have faced thorny challenges, primarily due to the growth of lithium dendrites and utilization of leaky, flammable organic liquid electrolyte, which would lead to battery failure and potential safety hazards. Replacing liquid electrolyte with solid-state electrolyte comes out to be a promising solution to the issues above. Recently, polymer solid electrolytes have garnered significant attention for their lightweight, safety, designable structure and excellent mechanical properties, which could restrain the uncontrollable growing of lithium dendrites. However, the high crystallinity and the resultant low ion conductivity at room temperature have impeded their widespread commercialization. Significant efforts have been directed towards the development of polymer solid electrolytes with superior performance. Herein, the recent development of polymer solid electrolyte is reviewed and summarized, including polyether polymers, polycarbonate polymers, fluorinated polymers, poly(ionic liquid) polymers, and single ion conductive polymers. Each of these polymer solid electrolytes offers unique advantages and challenges. The respective properties of different polymer electrolytes and the influence on the electrochemical performance are compared and discussed in detail. This article also focuses on the progress in structural designs and the innovation in synthesis process for different polymer matrixes in order to improve the ion conductivity at room temperature. For structural designs, grafting kinds of polar groups to the matrix structure, or designing various types of chain structures can reduce crystallinity, and thus enhance the ion transport. In addition to the conventional solution-casting method and phase inversion technique, electrospinning method, UV coating and other in-situ processes are utilized in the preparation of polymer solid electrolytes. Finally, in this paper, the existing fundamental research challenges and practical application issues associated with polymer solid electrolytes are thoroughly discussed. It is our sincere hope that this review will offer insights and references for the design, synthesis, and development of novel polymer solid electrolytes, which holds significant promise for electrochemical performance enhancement and safe operation of all-solid-state lithium metal batteries.

Key words: lithium metal battery, solid electrolyte, polymer electrolyte, structural design, synthesis process