化学学报 ›› 2024, Vol. 82 ›› Issue (4): 377-386.DOI: 10.6023/A24010017 上一篇 下一篇
研究论文
崔勇康a,b, 成守飞a,b, 凌琳b, 李玉学b,*(), 吕龙b,*()
投稿日期:
2024-01-16
发布日期:
2024-03-04
基金资助:
Yongkang Cuia,b, Shoufei Chenga,b, Lin Lingb, Yuxue Lib,*(), Long Lub,*()
Received:
2024-01-16
Published:
2024-03-04
Contact:
* E-mail: Supported by:
文章分享
近几十年以来, 传统含能材料的发展遇到了瓶颈. 如何继续提高能量水平, 打破瓶颈, 是这一领域亟待攻克的难题. 氟是比氧更强的氧化剂, 预期分子内引入氟可以进一步提高能量水平, 因此设计了13种二氟氨基二硝甲基取代的芳香杂环含能材料分子. 为了保证这些分子合成的可能性, 所有结构设计都是从已有的中间体出发, 并且原则上均可经由成熟的合成方法转化为目标分子. 对它们的分子结构、初始热分解机理以及能量特性进行的理论研究表明, 多数分子具有足够的动力学稳定性. 本工作通过深入分析, 揭示了分子结构与动力学稳定性之间的关系. 使用硝酸酯增塑聚醚(NEPE)固体推进剂配方对这些分子的能量特性进行了理论评价, 最终优选出4种分子, 其中最好的一个不仅动力学稳定性较好, 而且配方比冲高达280.1 s, 比传统的环四亚甲基四硝胺(HMX)配方提高了8.4 s.
崔勇康, 成守飞, 凌琳, 李玉学, 吕龙. 二氟氨基二硝甲基芳香杂环含能材料的理论研究[J]. 化学学报, 2024, 82(4): 377-386.
Yongkang Cui, Shoufei Cheng, Lin Ling, Yuxue Li, Long Lu. Theoretical Study on Energetic Materials Containing (Difluoramino)dinitromethyl Substituted Heteroaromatic Rings[J]. Acta Chimica Sinica, 2024, 82(4): 377-386.
Compd. | 1-NF2 | 2-NF2 | 3-NF2 | 4-NF2 | 5-NF2 | 6-NF2 | 7-NF2 |
---|---|---|---|---|---|---|---|
ρ/g/cm3) | 2.04 | 2.00 | 2.04 | 2.07 | 2.04 | 2.04 | 1.98 |
C-NF2 (Å) | 1.495 | 1.490 | 1.495 | 1.487 | 1.488 | 1.494 | 1.494 |
C-NO2a (Å) | 1.589 | 1.568 | 1.593 | 1.566 | 1.577 | 1.565 | 1.566 |
Compd. | 8-NF2 | 9-NF2 | 10-NF2 | 11-NF2 | 12-NF2 | 13-NF2 | |
ρ/g/cm3) | 1.93 | 1.96 | 1.98 | 2.10 | 2.05 | 2.08 | |
C-NF2 (Å) | 1.484 | 1.493 | 1.492 | 1.489 | 1.492 | 1.491 | |
C-NO2a (Å) | 1.599 | 1.569 | 1.556 | 1.589 | 1.569 | 1.558 |
Compd. | 1-NF2 | 2-NF2 | 3-NF2 | 4-NF2 | 5-NF2 | 6-NF2 | 7-NF2 |
---|---|---|---|---|---|---|---|
ρ/g/cm3) | 2.04 | 2.00 | 2.04 | 2.07 | 2.04 | 2.04 | 1.98 |
C-NF2 (Å) | 1.495 | 1.490 | 1.495 | 1.487 | 1.488 | 1.494 | 1.494 |
C-NO2a (Å) | 1.589 | 1.568 | 1.593 | 1.566 | 1.577 | 1.565 | 1.566 |
Compd. | 8-NF2 | 9-NF2 | 10-NF2 | 11-NF2 | 12-NF2 | 13-NF2 | |
ρ/g/cm3) | 1.93 | 1.96 | 1.98 | 2.10 | 2.05 | 2.08 | |
C-NF2 (Å) | 1.484 | 1.493 | 1.492 | 1.489 | 1.492 | 1.491 | |
C-NO2a (Å) | 1.599 | 1.569 | 1.556 | 1.589 | 1.569 | 1.558 |
Compd. | 1-NF2 | 2-NF2 | 3-NF2 | 4-NF2 | 5-NF2 | 6-NF2 | 7-NF2 |
---|---|---|---|---|---|---|---|
Energy Barrier ΔG | 30.5 | 32.8 | 30.5 | 30.0 | 29.0 | 32.6 | 33.2 |
BDE ΔH | 39.0 | 41.2 | 38.7 | 37.3 | 36.3 | 40.3 | 40.6 |
Compd. | 8-NF2 | 9-NF2 | 10-NF2 | 11-NF2 | 12-NF2 | 13-NF2 | |
Energy Barrier ΔG | 22.1 | 32.3 | 31.4 | 26.1 | 31.7 | 31.8 | |
BDE ΔH | 27.3 | 41.3 | 40.9 | 33.1 | 41.3 | 41.1 |
Compd. | 1-NF2 | 2-NF2 | 3-NF2 | 4-NF2 | 5-NF2 | 6-NF2 | 7-NF2 |
---|---|---|---|---|---|---|---|
Energy Barrier ΔG | 30.5 | 32.8 | 30.5 | 30.0 | 29.0 | 32.6 | 33.2 |
BDE ΔH | 39.0 | 41.2 | 38.7 | 37.3 | 36.3 | 40.3 | 40.6 |
Compd. | 8-NF2 | 9-NF2 | 10-NF2 | 11-NF2 | 12-NF2 | 13-NF2 | |
Energy Barrier ΔG | 22.1 | 32.3 | 31.4 | 26.1 | 31.7 | 31.8 | |
BDE ΔH | 27.3 | 41.3 | 40.9 | 33.1 | 41.3 | 41.1 |
Compd. | Formula | ΔHf/ (kJ/mol) | K-J Function | EXPLO5 | ||
---|---|---|---|---|---|---|
D/(m/s) | P/GPa | D/(m/s) | P/GPa | |||
1-NF2 | C3F2N6O7 | 180.1 | 9117 | 38.5 | 8752 | 35.4 |
2-NF2 | C6F4N10O11 | 213.7 | 9294 | 40.2 | 8663 | 34.6 |
3-NF2 | C6F4N12O10 | 585.7 | 9515 | 42.1 | 9066 | 38.5 |
4-NF2 | C4F4N8O9 | –12.9 | 8927 | 37.1 | 8437 | 33.1 |
5-NF2 | C6F4N10O10 | 56.2 | 9190 | 39.1 | 8736 | 35.6 |
6-NF2 | C6F4N10O10 | 103.0 | 9227 | 39.4 | 8762 | 35.6 |
7-NF2 | C7H2F4N10O10 | 16.2 | 9232 | 38.8 | 8855 | 39.2 |
8-NF2 | C3H2F2N6O5 | –98.5 | 9160 | 37.6 | 8757 | 37.5 |
9-NF2 | C3HF2N7O6 | 106.2 | 9203 | 38.4 | 8885 | 36.6 |
10-NF2 | C6H2F4N12O8 | 187.8 | 9205 | 38.6 | 8910 | 39.0 |
11-NF2 | C3F4N6O5 | 41.3 | 9217 | 40.0 | 8452 | 34.3 |
12-NF2 | C3F3N7O6 | 177.7 | 9127 | 38.7 | 8640 | 34.8 |
13-NF2 | C6F6N12O8 | 299.2 | 9356 | 41.0 | 8847 | 37.1 |
Compd. | Formula | ΔHf/ (kJ/mol) | K-J Function | EXPLO5 | ||
---|---|---|---|---|---|---|
D/(m/s) | P/GPa | D/(m/s) | P/GPa | |||
1-NF2 | C3F2N6O7 | 180.1 | 9117 | 38.5 | 8752 | 35.4 |
2-NF2 | C6F4N10O11 | 213.7 | 9294 | 40.2 | 8663 | 34.6 |
3-NF2 | C6F4N12O10 | 585.7 | 9515 | 42.1 | 9066 | 38.5 |
4-NF2 | C4F4N8O9 | –12.9 | 8927 | 37.1 | 8437 | 33.1 |
5-NF2 | C6F4N10O10 | 56.2 | 9190 | 39.1 | 8736 | 35.6 |
6-NF2 | C6F4N10O10 | 103.0 | 9227 | 39.4 | 8762 | 35.6 |
7-NF2 | C7H2F4N10O10 | 16.2 | 9232 | 38.8 | 8855 | 39.2 |
8-NF2 | C3H2F2N6O5 | –98.5 | 9160 | 37.6 | 8757 | 37.5 |
9-NF2 | C3HF2N7O6 | 106.2 | 9203 | 38.4 | 8885 | 36.6 |
10-NF2 | C6H2F4N12O8 | 187.8 | 9205 | 38.6 | 8910 | 39.0 |
11-NF2 | C3F4N6O5 | 41.3 | 9217 | 40.0 | 8452 | 34.3 |
12-NF2 | C3F3N7O6 | 177.7 | 9127 | 38.7 | 8640 | 34.8 |
13-NF2 | C6F6N12O8 | 299.2 | 9356 | 41.0 | 8847 | 37.1 |
Compd. | NF2-Ox/% | AP/% | Al/% | ρp/(g/cm3) | Isp | F/% |
---|---|---|---|---|---|---|
1-NF2 | 60 | 0 | 15 | 1.910 | 276.499 | 14.08 |
2-NF2 | 60 | 0 | 15 | 1.889 | 274.814 | 16.38 |
3-NF2 | 62.5 | 0 | 12.5 | 1.899 | 280.064 | 15.97 |
4-NF2 | 60 | 0 | 15 | 1.926 | 274.861 | 20.00 |
5-NF2 | 60 | 0 | 15 | 1.910 | 271.657 | 16.97 |
6-NF2 | 60 | 0 | 15 | 1.910 | 272.612 | 16.97 |
7-NF2 | 64 | 0 | 11 | 1.859 | 269.561 | 16.45 |
8-NF2 | 44 | 14 | 17 | 1.864 | 267.604 | 15.83 |
9-NF2 | 60 | 0 | 15 | 1.867 | 273.919 | 14.13 |
10-NF2 | 44 | 16 | 15 | 1.875 | 269.259 | 17.04 |
11-NF2 | 70 | 0 | 5 | 1.902 | 280.308 | 27.52 |
12-NF2 | 64 | 0 | 11 | 1.898 | 277.928 | 19.86 |
13-NF2 | 70 | 0 | 5 | 1.891 | 276.083 | 23.65 |
HMX | 42 | 15 | 18 | 1.860 | 271.638 | 0.00 |
3-NO2 | 60 | 0 | 15 | 1.817 | 275.686 | 0.00 |
Compd. | NF2-Ox/% | AP/% | Al/% | ρp/(g/cm3) | Isp | F/% |
---|---|---|---|---|---|---|
1-NF2 | 60 | 0 | 15 | 1.910 | 276.499 | 14.08 |
2-NF2 | 60 | 0 | 15 | 1.889 | 274.814 | 16.38 |
3-NF2 | 62.5 | 0 | 12.5 | 1.899 | 280.064 | 15.97 |
4-NF2 | 60 | 0 | 15 | 1.926 | 274.861 | 20.00 |
5-NF2 | 60 | 0 | 15 | 1.910 | 271.657 | 16.97 |
6-NF2 | 60 | 0 | 15 | 1.910 | 272.612 | 16.97 |
7-NF2 | 64 | 0 | 11 | 1.859 | 269.561 | 16.45 |
8-NF2 | 44 | 14 | 17 | 1.864 | 267.604 | 15.83 |
9-NF2 | 60 | 0 | 15 | 1.867 | 273.919 | 14.13 |
10-NF2 | 44 | 16 | 15 | 1.875 | 269.259 | 17.04 |
11-NF2 | 70 | 0 | 5 | 1.902 | 280.308 | 27.52 |
12-NF2 | 64 | 0 | 11 | 1.898 | 277.928 | 19.86 |
13-NF2 | 70 | 0 | 5 | 1.891 | 276.083 | 23.65 |
HMX | 42 | 15 | 18 | 1.860 | 271.638 | 0.00 |
3-NO2 | 60 | 0 | 15 | 1.817 | 275.686 | 0.00 |
[1] |
Bottaro, J. C. Chemistry & Industry 1996, 249.
|
[2] |
Wang, W. J. J. Solid Rocket Technol. 2003, 26, 42. (in Chinese)
|
(王文俊, 固体火箭技术, 2003, 26, 42.)
|
|
[3] |
Dong, H. S. Chin. J. Energ. Mater. 2004, A01, 1. (in Chinese)
|
(董海山, 含能材料, 2004, A01, 1.)
|
|
[4] |
Sikder, A. K.; Sikder, N. J. Hazard. Mater. 2004, 112, 1.
pmid: 15225926 |
[5] |
Huang, H.; Wang, Z. S.; Huang, H. J.; Li, J. S. Chin. J. Explos. Propellants. 2005, 28, 9. (in Chinese)
|
(黄辉, 王泽山, 黄亨建, 李金山, 火炸药学报, 2005, 28, 9.)
|
|
[6] |
Zhang, J. G.; Qin, J.; Klapötke, T. M. Chemistry of High Energy Materials, Beijing Institute of Technology Press, Beijing, 2016. (in Chinese)
|
(张建国, 秦涧译, Thomas M. Klapötke著, 高能材料化学, 北京理工大学出版社, 北京, 2016.)
|
|
[7] |
Trache, D.; Klapötke, T. M.; Maiz, L.; Abd-Elghany, M.; DeLuca, L. T. Green Chem. 2017, 19, 4711.
doi: 10.1039/C7GC01928A |
[8] |
Huang, H. J.; Huang, H. Materials China 2018, 37, 889. (in Chinese)
|
(黄亨建, 黄辉, 中国材料进展, 2018, 37, 889.)
|
|
[9] |
Tian, J. J.; Zhang, Q. H.; Li, J. S. Chin. J. Energ. Mater. 2016, 24, 1. (in Chinese)
|
(田均均, 张庆华, 李金山, 含能材料, 2016, 24, 1.)
|
|
[10] |
Du, Y.; Qu, Z. K.; Wang, H. C.; Cui, H.; Wang, X. J. Explos. Pyrotech. 2021, 46, 860.
doi: 10.1002/prep.v46.6 |
[11] |
Peng, C. Z.; Fan, X. P.; Ren, X. X.; Zhang, P.; Peng, L. X. Winged Missiles Journal 2011, 7, 92. (in Chinese)
|
(彭翠枝, 范夕萍, 任晓雪, 张培, 彭玲霞, 飞航导弹, 2011, 7, 92.)
|
|
[12] |
Dias, R. P.; Silvera, I. F. Science 2017, 355, 715.
doi: 10.1126/science.aal1579 |
[13] |
Tian, D. Y.; Liu, J. H. Computational Energetics of Chemical propellants, Henan Science and Technology Press, Zhengzhou, 1999. (in Chinese)
|
(田德余, 刘剑洪, 化学推进剂计算能量学, 河南科学技术出版社, 郑州, 1999.)
|
|
[14] |
Tang, W. Q.; Yang, R. J.; Li, J. M.; Ou, D.; Huo, Z. J. Solid Rocket Technol. 2020, 43, 679. (in Chinese)
|
(唐伟强, 杨荣杰, 李建民, 欧东, 霍正, 固体火箭技术, 2020, 43, 679.)
|
|
[15] |
Yao, Q. F.; Mao, C. C.; Shao, Y. L.; Xia, M.; Luo, Y. J. Chin. J. Energ. Mater. 2022, 30, 804. (in Chinese)
|
(姚启发, 毛超超, 邵玉玲, 夏敏, 罗运军, 含能材料, 2022, 30, 804.)
|
|
[16] |
Zhang, X. W.; Zhu, W. H; Xiao, H. M. Int. J. Quantum. Chem. 2009, 110, 1549.
doi: 10.1002/qua.22283 |
[17] |
Duan, B. H.; Liu, N.; Lu, X. M.; Mo, H. C.; Zhang, Q., Liu, Y. Z.; Wang, B. Z. Sci. Rep. 2020, 10, 18292.
doi: 10.1038/s41598-020-75281-5 |
[18] |
Frazer, J. W. J. Inorg. Nucl. Chem. 1960, 16, 63.
doi: 10.1016/0022-1902(60)80088-7 |
[19] |
Petry, R. C.; Freeman, J. P. J. Org. Chem. 1967, 32, 4034.
doi: 10.1021/jo01287a068 |
[20] |
Zhai, L. J.; Zhang, J. L.; Zhang, J. R.; Wu, M. J.; Bi, F. Q.; Wang, B. Z. Chin. J. Org. Chem. 2020, 40, 1484. (in Chinese)
doi: 10.6023/cjoc202001018 |
(翟连杰, 张俊林, 张家荣, 吴敏杰, 毕福强, 王伯周, 有机化学, 2020, 40, 1484.)
doi: 10.6023/cjoc202001018 |
|
[21] |
Guo, Z. H.; Yu, Q.; Chen, Y. C.; Liu, J.; Li, T.; Peng, Y. H.; Yi, W. B. Chem. Rec. 2023, 23, e202300108.
doi: 10.1002/tcr.v23.9 |
[22] |
Dalinger, I. L.; Kormanov, A. V.; Suponitsky, K. Y.; Muravyev, N. V.; Sheremetev, A. B. Chem. Asian. J. 2018, 13, 1165.
doi: 10.1002/asia.v13.9 |
[23] |
Muravyev, N. V.; Suponitsky, K. Y.; Fedyanin, I. V.; Pivkina, A. N.; Dalinger, I. L. Chem. Eng. J. 2022, 449, 137816
doi: 10.1016/j.cej.2022.137816 |
[24] |
Yu, Q.; Yin, P.; Zhang, J. H.; He, C. L.; Imler, G. H.; Parrish, D. A.; Shreeve, J. M. J. Am. Chem. Soc. 2017, 139, 8816.
doi: 10.1021/jacs.7b05158 |
[25] |
Yu, Q.; Chinnam, A. K.; Yin, P.; Imler, G. H.; Parrish, D. A.; Shreeve, J. M. J. Mater. Chem. A 2020, 8, 5859.
doi: 10.1039/D0TA01538E |
[26] |
Tian, J. W.; Xiong, H. L.; Lin, Q. H.; Cheng, G. B.; Yang, H. W. New. J. Chem. 2017, 41, 1918.
doi: 10.1039/C6NJ03608B |
[27] |
Kettner, M. A.; Karaghiosoff, K.; Klapotke, T. M.; Suceska, M.; Wunder, S. Chem. Eur. J. 2014, 20, 7622.
doi: 10.1002/chem.v20.25 |
[28] |
Lu, T.; Wang, C. B.; Wang, G. L.; Wang, S. Q; Song, J.; Yin, H. Q; Fan, G. J.; Chen, F. X. New. J. Chem. 2019, 43, 13330.
doi: 10.1039/C9NJ01452G |
[29] |
Li, H.; Zhao, F. Q; Wang, B. Z.; Zhai, L. J.; Lai, W. P.; Liu, N. RSC Adv. 2015, 5, 21422.
doi: 10.1039/C5RA00175G |
[30] |
Tang, Y. X.; Gao, H. X.; Imler, G. H.; Parrish, D. A.; Shreeve, J. M. RSC Adv. 2016, 6, 91477.
doi: 10.1039/C6RA22007J |
[31] |
Zhang, J. H.; Zhang, Q. H.; Vo, T. T.; Parrish, D. A.; Shreeve, J. M., J. Am. Chem. Soc. 2015, 137, 1697.
doi: 10.1021/ja5126275 |
[32] |
Thottempudi, V.; Gao, H. X.; Shreeve, J. M. J. Am. Chem. Soc. 2011, 133, 6464.
doi: 10.1021/ja2013455 pmid: 21449560 |
[33] |
Ma, Q.; Gu, H.; Huang, J. L.; Nie, F.; Fan, G. J.; Liao, L. Y.; Yang, W. New. J. Chem. 2018, 42, 2376.
doi: 10.1039/C7NJ03939E |
[34] |
Xue, Q.; Bi, F. Q.; Wang, Z. J.; Lian, P.; Zhang, J. R.; Wu, M. J.; Wang, B. Z. Chin. J. Explos. Propellants 2021, 44, 461. (in Chinese)
|
(薛琪, 毕福强, 王子俊, 廉鹏, 张家荣, 吴敏杰, 王伯周, 火炸药学报, 2021, 44, 461.)
doi: 10.14077/j.issn.1007-7812.202009013 |
|
[35] |
Cao, W. L.; Dong, W. S.; Lu, Z. J.; Bi, Y. F.; Hu, Y.; Wang, T. W.; Zhang, C.; Li, Z. M.; Yu, Q. Y.; Zhang, J. G. Chem. Eur. J. 2021, 27, 13807.
doi: 10.1002/chem.v27.55 |
[36] |
See supporting information.
|
[37] |
Ling, L.; Wang, J.; Li, J.; Li, Y. X.; Lu, L. Chin. J. Org. Chem. 2023, 43, 285. (in Chinese)
doi: 10.6023/cjoc202206027 |
(凌琳, 王健, 李婧, 李玉学, 吕龙, 有机化学, 2023, 43, 285.)
doi: 10.6023/cjoc202206027 |
|
[38] |
Yang, J.; Ling, L.; Li, Y. X.; Lu, L. Acta Chim. Sinica 2023, 81, 328. (in Chinese)
doi: 10.6023/A23020056 |
(杨洁, 凌琳, 李玉学, 吕龙, 化学学报, 2023, 81, 328.)
doi: 10.6023/A23020056 |
|
[39] |
Stepanov, R. S.; Kruglyakova, L. A.; Astakhov, A. M. Russ. J. Gen. Chem. 2007, 77, 1933.
doi: 10.1134/S1070363207110151 |
[40] |
Li, W. X. Chem. Bull. 1988, 5, 19. (in Chinese)
|
(李卫星, 化学通报, 1988, 5, 19.)
|
|
[41] |
Peterson, J. P.; Winter, A. H. J. Am. Chem. Soc. 2019, 141, 12901.
doi: 10.1021/jacs.9b06576 pmid: 31352783 |
[42] |
Kamlet, M. J.; Jacobs, S. J. J. Chem. Phys. 1968, 48, 23.
|
[43] |
Keshavarz, M. H.; Pouretedal, H. R. Thermochim. Acta 2004, 414, 203.
doi: 10.1016/j.tca.2003.11.019 |
[44] |
Sućeska, M. Explos. Pyrotech. 1999, 24, 280.
doi: 10.1002/(ISSN)1521-4087 |
[45] |
Hou, L. F. Composite Solid Propellants, Astronautical Publishing House, Beijing, 1994. (in Chinese)
|
(侯林法, 复合固体推进剂, 宇航出版社, 北京, 1994.)
|
|
[46] |
Li, M.; Zhao, F. Q.; Xu, S. Y.; Yao, E. G.; Pei, Q.; Hao, H. X.; Jiang, H. Y. Chin. J. Explos. Propellants 2016, 39, 86. (in Chinese)
|
(李猛, 赵凤起, 徐司雨, 姚二岗, 裴庆, 郝海霞, 姜菡雨, 火炸药学报, 2016, 39, 86.)
doi: 10.14077/j.issn.1007-7812.2016.02.018 |
|
[47] |
Xie, W. X.; Zhao, Y.; Zhang, W.; Liu, Y. F.; Fan, X. Z.; Wang, B. Z.; Wei, H.; Yan, Q. L. Propellants Explos. Pyrotech. 2018, 43, 308.
doi: 10.1002/prep.v43.3 |
[48] |
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J., Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford CT, 2016.
|
[49] |
Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
doi: 10.1063/1.464913 |
[50] |
Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.
doi: 10.1007/s00214-007-0310-x |
[1] | 杨洁, 凌琳, 李玉学, 吕龙. 高氯酸铵热分解机理的密度泛函理论研究[J]. 化学学报, 2023, 81(4): 328-337. |
[2] | 母伟花, 马瑶, 方德彩, 王蓉, 张海娜. 1-碘-2-锂-邻碳硼烷与环戊二烯衍生物的类Diels-Alder反应的理论研究[J]. 化学学报, 2018, 76(1): 55-61. |
[3] | 胡磊, 马振叶, 纪明卫, 张利雄. 纳米Fe2O3/端羟基聚丁二烯(HTPB)复合粒子的制备与表征[J]. 化学学报, 2011, 69(24): 3028-3032. |
[4] | 孟祥军, 郭小松, 贾俊芳, 和芹, 王一波. 5水合甘氨酸复合体的结构和性能的理论研究[J]. 化学学报, 2011, 69(01): 25-36. |
[5] | 付一政, 胡双启, 兰艳花, 刘亚青. HTPB/增塑剂玻璃化转变温度及力学性能的分子动力学模拟[J]. 化学学报, 2010, 68(08): 809-813. |
[6] | 殷明,舒远杰,雄鹰,罗世凯,龙新平,朱祖良. 硝基咪唑化合物结构与性质的理论研究[J]. 化学学报, 2008, 66(19): 2117-2123. |
[7] | 周中军 刘慧玲 黄旭日 孙家锺. 预测[Si, C, S]+和[Si, C, S]-体系的稳定异构体[J]. 化学学报, 2008, 66(14): 1637-1640. |
[8] | 林宪杰, 徐为人, 武剑, 刘成卜. 苯甲醛肟与炔丙醇偶极环加成反应的理论研究[J]. 化学学报, 2007, 65(10): 930-936. |
[9] | 孙政,曾小庆,王炜罡,葛茂发,王殿勋. 几种多氮杂环高能化合物的光电子能谱与紫外吸收光谱[J]. 化学学报, 2006, 64(3): 218-222. |
[10] | 何文娣,周歌,胡海荣,田双河,田安民,文忠,赵鹏骥,徐起磊. 含能材料2,6-二胺-3,5-二硝基吡嗪-1-氧化物的B3LYP 研究[J]. 化学学报, 2001, 59(8): 1210-1215. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||