化学学报 ›› 2024, Vol. 82 ›› Issue (7): 763-771.DOI: 10.6023/A24040147 上一篇    下一篇

研究论文

金-银纳米异质组装过程的化学不相容性

王程鋆, 王悦靓, 王会巧, 邓兆祥*()   

  1. 中国科学技术大学化学系 合肥 230026
  • 投稿日期:2024-04-28 发布日期:2024-06-12
  • 基金资助:
    国家重点研发计划(2021YFA1200101); 国家重点研发计划(2018YFA0702001); 国家自然科学基金(21991132)

Unveiling the Chemical Incompatibility of Au-Ag Heteronanoassembly

Chengjun Wang, Yueliang Wang, Huiqiao Wang, Zhaoxiang Deng*()   

  1. Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
  • Received:2024-04-28 Published:2024-06-12
  • Contact: *E-mail: zhxdeng@ustc.edu.cn
  • Supported by:
    National Key Research & Development Program of China(2021YFA1200101); National Key Research & Development Program of China(2018YFA0702001); National Natural Science Foundation of China(21991132)

通过自组装构筑不同金属纳米粒子间的异质组装体, 对于理解和调控等离激元近场耦合, 以及“点亮”等离激元光学暗态等具有重要意义. 利用组装体中不同金属的催化活性差异, 还可望实现协同或接力催化. 金和银纳米材料在可见光区具有强吸收和散射, 成为等离激元器件的常见选择. 由于银的化学性质较金活泼, 其胶体稳定性也不及金纳米粒子, 实际应用中远没有金纳米粒子普及. 与金相比, 银纳米粒子的带间跃迁与等离激元共振较为远离, 其等离激元损耗也更低, 呈现比金更强且更对称的等离激元共振峰, 展现出诱人的光学性质. 在自组装结构中同时引入金和银两种纳米砌块, 可望实现同质结构无法获得的功能. 然而, 由于两者具有显著不同的化学性质, 需对其化学相容性进行探究. 本工作首先制备出具有电荷转移等离激元共振特性的金-银纳米粒子, 其独特的双金属结构和良好的胶体稳定性不仅方便其DNA功能化和可编程自组装, 同时也有利于对金粒子表面沉积的银纳米粒子尺寸和形貌变化进行观测. 基于Au-Ag纳米粒子与金纳米粒子的简单混合和组装实验, 清楚揭示了金纳米粒子增强的银刻蚀现象, 并提出金表面促进银转移反应(GSPSTR)这一化学机制, 以及增强银和金纳米单元间化学相容性的有效办法. 本工作对于利用DNA导向组装实现银纳米粒子参与的多元金属异质结构, 以及发展等离激元和催化等功能与应用具有重要意义, 更为正确理解金属银参与的纳米合成与组装等过程提供了新认识.

关键词: 金纳米粒子, 银纳米粒子, 等离激元, 异质组装, 化学相容性

Metal nanoparticles displaying localized surface plasmon resonance (LSPR) are attractive to sensing, biological imaging, and nanomedical applications. Building nanoassemblies of different metals is of great value toward heterogeneous plasmon hybridization, LSPR tuning, and “lighting-up” of dark LSPR states. Based on the distinct activities of different nanounits and their spatial proximity, functional synergy or relay may be realized. Gold and silver nanomaterials strongly absorb and scatter light in the visible region, making them first choices for plasmonic engineering. However, silver is far less popular than gold in the bottom-up construction of plasmonic structures, which is mainly due to its unsatisfactory chemical and colloidal stabilities. On the other hand, the interband transition of silver nanoparticles is far away from their plasmon resonance, which, along with their relatively small plasmon loss, leads to strong and somewhat symmetric LSPR peaks superior to gold nanoparticles. More importantly, the simultaneous introduction of gold and silver into self-assembled structures is expected to generate properties and functions that cannot be realized by homogeneous assemblies. However, the dramatically different chemical properties of gold and silver might lead to a compatibility problem. To address this issue, Au-Ag heterodimeric nanoparticles featuring a charge transfer plasmon resonance are synthesized and utilized as ideal silver-containing materials to uncover the Au-Ag chemical incompatibility. The good colloidal stability of the Au-Ag nanoparticles enables their DNA grafting and DNA-programmable assembly. In addition, the bimetallic nature and the charge transfer plasmon resonance of the Au-Ag nanoparticles facilitate the observation of a silver etching reaction in the presence of gold nanoparticles. The chemical source of such an incompatibility is then proposed, which involves several “solid-solution-solid” pathways capable of promoting a “silver-transfer” to the gold surface. Such understanding finally leads to strategies toward improved gold-silver chemical compatibility. This work paves a way to the construction of heterogeneous nanoassemblies involving silver and other noble metals toward sensing, catalysis, light harvesting, and optoelectronics.

Key words: gold nanoparticle, silver nanoparticle, plasmon, heteroassembly, chemical compatibility