化学学报 ›› 2024, Vol. 82 ›› Issue (10): 1022-1030.DOI: 10.6023/A24060196 上一篇 下一篇
研究论文
投稿日期:
2024-06-15
发布日期:
2024-08-30
文章分享
葡萄糖生物燃料电池(GFC)是一种能够将葡萄糖燃料中的化学能转换为电能的装置, 在自供电可穿戴医疗设备领域有着广泛的应用. 本工作采用一种简单的超声辅助法制备了PtAu纳米颗粒催化剂, 在中性环境下作为柔性GFC的阳极催化剂用于催化葡萄糖. PtAu催化剂对葡萄糖催化具有较高的活性和稳定性. 此外, 本工作还引入了消耗性固态二氧化锰(MnO2)电极替代O2还原阴极, 避免溶液中低氧溶解度和缓慢的O2还原动力学等问题. 通过采用PtAu催化剂修饰的碳布(PtAu/CC)阳极和MnO2/CC阴极制备的无膜柔性GFC的最大功率密度(Pmax)为22.61 μW•cm−2, 开路电压(EOCV)为0.439 V, 这为可穿戴设备领域的研究提供了新思路.
许廷强. 基于PtAu阳极催化剂的柔性生物燃料电池的性能研究[J]. 化学学报, 2024, 82(10): 1022-1030.
Tingqiang Xu. Performance Study of Flexible Biofuel Cell Based on PtAu Anode Catalysts[J]. Acta Chimica Sinica, 2024, 82(10): 1022-1030.
阳极材料 | 阴极材料 | 葡萄糖浓度/ (mmol•L−1) | EOCV/V | Pmax/ (μW•cm−2) | 参考文献 |
---|---|---|---|---|---|
Raney-Pt | Porous-Pt | 8 | — | 4.4 | [ |
PtPd | Pt/C | 500 | 0.616 | 27.6 | [ |
Pt70Ni30 | Pt70Ni30 | 3 | 0.460 | 7.2 | [ |
Au | Graphene | 500 | 0.82 | 10.7 | [ |
PtAu | MnO2 | 30 | 0.439 | 22.61 | 本工作 |
阳极材料 | 阴极材料 | 葡萄糖浓度/ (mmol•L−1) | EOCV/V | Pmax/ (μW•cm−2) | 参考文献 |
---|---|---|---|---|---|
Raney-Pt | Porous-Pt | 8 | — | 4.4 | [ |
PtPd | Pt/C | 500 | 0.616 | 27.6 | [ |
Pt70Ni30 | Pt70Ni30 | 3 | 0.460 | 7.2 | [ |
Au | Graphene | 500 | 0.82 | 10.7 | [ |
PtAu | MnO2 | 30 | 0.439 | 22.61 | 本工作 |
[1] |
Kim, J.; Campbell, A. S.; de Ávila, B. E.-F.; Wang, J. Nat. Biotechnol. 2019, 37 389.
|
[2] |
Gong, S.; Schwalb, W.; Wang, Y.; Chen, Y.; Tang, Y.; Si, J.; Shirinzadeh, B.; Cheng, W. Nat. Commun. 2014, 5 3132.
doi: 10.1038/ncomms4132 pmid: 24495897 |
[3] |
Liang, H.-R.; Ma, H.-X.; Duan, X.-R.; Yu, J.; Wang, H.-M.; Li, S.; Zhu, M.-J.; Chen, A.-B.; Zheng, H.; Zhang, Y.-Y. Acta Chim. Sinica 2023, 81 1402 (in Chinese).
|
(梁华润, 马浩轩, 段新荣, 于洁, 王灏珉, 李硕, 朱梦嘉, 陈爱兵, 郑晖, 张莹莹, 化学学报, 2023, 81 1402.)
doi: 10.6023/A23060289 |
|
[4] |
Liu, Y.-X.; Cao, C. AET 2023, 49 75 (in Chinese).
|
(刘宇轩, 曹超, 电子技术应用, 2023, 49 75.)
|
|
[5] |
Wang, J.; Sun, M.; Pei, X.; Zheng, L.; Ma, C.; Liu, J.; Cao, M.; Bai, J.; Zhou, M. Adv. Funct. Mater. 2022, 32 2209697.
|
[6] |
Guan, S.; Wang, J.; Yang, Y.; Zhu, X.; Zhou, J.; Ye, D.; Chen, R.; Dai, H.; Liao, Q. Adv. Funct. Mater. 2023, 33 2303134.
|
[7] |
Zou, Q.; Liu, J.; Zhu, G.-B.; Zhang, X.-H.; Chen, J.-H. Acta Chim. Sinica 2013, 71 1154 (in Chinese).
|
(邹琼, 刘娟, 朱刚兵, 张小华, 陈金华, 化学学报, 2013, 71 1154.)
doi: 10.6023/A13030285 |
|
[8] |
Miao, K.-P.; Yan, L.; Ma, P.-C.; Ma, X.-Y. Chinese J. Power Sources 2021, 45 406 (in Chinese).
|
(苗昆鹏, 闫龙, 马鹏程, 马晓燕, 电源技术, 2021, 45 406.)
|
|
[9] |
Santiago, Ó.; Navarro, E.; Raso, M. A.; Leo, T. J. Appl. Energy 2016, 179 497.
|
[10] |
Santoro, C.; Babanova, S.; Erable, B.; Schuler, A.; Atanassov, P. Bioelectrochemistry 2016, 108 1.
doi: 10.1016/j.bioelechem.2015.10.005 pmid: 26544631 |
[11] |
Pletcher, D. J. Appl. Electrochem. 1984, 14 403.
|
[12] |
Mello, G. A. B.; Cheuquepán, W.; Briega-Martos, V.; Feliu, J. M. Electrochim. Acta 2020, 354 136765.
|
[13] |
Tian, K.; Baskaran, K.; Tiwari, A. Vacuum 2018, 155 696.
|
[14] |
Wei, W.; Hui, W.-Y.; Shan, C.-S. J. Hubei Univ., Nat. Sci. 2023, 45 18 (in Chinese).
|
(魏文, 惠文宇, 单长胜, 湖北大学学报(自然科学版), 2023, 45 18.)
|
|
[15] |
Chu, T.-F.; Lin, F.-Y.; Kuznetsova, I.; Wang, G.-J. J. Power Sources 2021, 486 229374.
|
[16] |
Huang, J.; Simons, P.; Sunada, Y.; Rupp, J. L. M.; Yagi, S. J. Electrochem. Soc. 2021, 168 064511.
|
[17] |
Zuo, C.; Chao, F.; Li, M.; Dai, Y.; Wang, J.; Xiong, F.; Jiang, Y.; An, Q. Adv. Energy Mater. 2023, 13 2301014.
|
[18] |
Deng, R.; Chen, J.; Chu, F.; Qian, M.; He, Z.; Robertson, A. W.; Maier, J.; Wu, F. Adv. Mater. 2024, 36 2311153.
|
[19] |
Shen, X.-F.; Wang, X.-N.; Yu, N.-S.; Yang, W.; Zhou, Y.-R.; Shi, Y.-H.; Wang, Y.-L.; Dong, L.-Z.; Di, J.-T.; Li, Q.-W. Acta Phys.-Chim. Sin. 2022, 38 58 (in Chinese).
|
(沈晓帆, 王晓娜, 俞能晟, 杨薇, 周雨融, 石艳红, 王玉莲, 董立忠, 邸江涛, 李清文, 物理化学学报, 2022, 38 58.)
|
|
[20] |
Xia, D.; Gao, H.; Li, M.; Holoubek, J.; Yan, Q.; Yin, Y.; Xu, P.; Chen, Z. SmartMat 2023, 4, e1208.
|
[21] |
Pan, Z.; Jin, L.; Yang, C.; Ji, X.; Liu, M. Chem. Eng. J. 2023, 470 144084.
|
[22] |
Chi, G.; Gong, W.; Xiao, G.; Pan, J.; Chen, J.; Su, L.; Fugetsu, B.; Sakata, I.; Zhang, X. Nano Energy 2023, 117 108887.
|
[23] |
Hou, Z.-X.; Wang, X.-H.; Qu, C.-Y.; Wang, J. Energy Storage Sci. Technol. 2020, 9 797 (in Chinese).
|
(侯朝霞, 王晓慧, 屈晨滢, 王健, 储能科学与技术, 2020, 9 797.)
doi: 10.19799/j.cnki.2095-4239.2019.0251 |
|
[24] |
Zheng, J. H.; Zhang, J. L.; Li, G.; Zhang, J. M.; Zhang, B. W.; Jiang, Y. X.; Sun, S. G. Mater. Today Energy 2022, 27 101028.
|
[25] |
Lv, Z.; Luo, Y.; Tang, Y.; Wei, J.; Zhu, Z.; Zhou, X.; Li, W.; Zeng, Y.; Zhang, W.; Zhang, Y.; Qi, D.; Pan, S.; Loh, X. J.; Chen, X. Adv. Mater. 2018, 30 1704531.
|
[26] |
Wang, F.; Cai, R.; Tan, W. Anal. Chem. 2023, 95 6046.
|
[27] |
Burke, L. D. Electrochim. Acta 1994, 39 1841.
|
[28] |
Tian, K.; Prestgard, M.; Tiwari, A. Mater. Sci. Eng. C 2014, 41 100.
|
[29] |
Gao, H.; Xiao, F.; Ching, C. B.; Duan, H. ACS Appl. Mater. Interfaces 2011, 3 3049.
|
[30] |
Do, U. P.; Seland, F.; Wang, K.; Johannessen, E. A. J. Mater. Sci. 2019, 54 14143.
|
[31] |
Kerzenmacher, S.; Kräling, U.; Metz, T.; Zengerle, R.; von Stetten, F. J. Power Sources 2011, 196 1264.
|
[32] |
Zhao, Y.; Tian, L.; Fan, Y.; Zhang, M.; Wang, X. J. Mater. Sci. 2021, 56 13066.
|
[33] |
Chu, T.-F.; Rajendran, R.; Kuznetsova, I.; Wang, G.-J. J. Power Sources 2020, 453 227844.
|
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||