| [1] |
Zhu, Y.; Romain, C.; Williams, C. K. Nature 2016, 540, 354.
|
| [2] |
Keram, M.; Ma, H. Acta Chim. Sinica 2018, 76, 121 (in Chinese)
|
|
( 布美热木•克里木, 马海燕, 化学学报, 2018, 76, 121.)
|
| [3] |
Pappalardo, D.; Mathisen, T.; Finne-Wistrand, A. Biomacromolecules 2019, 20, 1465.
doi: 10.1021/acs.biomac.9b00159
pmid: 30855137
|
| [4] |
Mehta, R.; Kumar, V.; Bhumia, H.; Upadhyay, S. N. J. Macromol. Sci. Part C: Polym. Rev. 2005, 45, 325.
|
| [5] |
Drumright, R. E.; Gruber, P. R.; Henton, D. E. Adv. Mater. 2000, 12, 1841.
|
| [6] |
Ungpittagul, T.; Wongmahasirikun, P.; Phomphrai, K. Dalton Trans. 2020, 49, 8460.
|
| [7] |
Haque, F. M.; Grayson, S. M. Nat. Chem. 2020, 12, 433.
|
| [8] |
Pangilinan, K.; Advincula, R. Polym. Int. 2014, 63, 803.
|
| [9] |
Chang, Y. A.; Waymouth, R. M. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 2892.
|
| [10] |
Laurent, B. A.; Grayson, S. M. Chem. Soc. Rev. 2009, 38, 2202.
doi: 10.1039/b809916m
pmid: 19623344
|
| [11] |
Hu, C.; Louisy, E.; Fontaine, G.; Bonnet, F. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 3175.
|
| [12] |
Piedra-Arroni, E.; Ladaviere, C.; Amgoune, A.; Bourissou, D. J. Am. Chem. Soc. 2013, 135, 13306.
doi: 10.1021/ja4069968
pmid: 23987101
|
| [13] |
Shaik, M.; Peterson, J.; Du, G. Macromolecules 2019, 52, 157.
|
| [14] |
Liu, J. Y.; Liu, S.; Suo, H. Y.; Qin, Y. S. Acta Polym. Sin. 2024, 55, 770 (in Chinese).
|
|
( 刘娇玉, 刘爽, 索泓一, 秦玉升, 高分子学报, 2024, 55, 770.)
|
| [15] |
Culkin, D. A.; Jeong, W.; Csihony, S.; Gomez, E. D.; Balsara, N. P.; Hedrick, J. L.; Waymouth, R. M. Angew. Chem., Int. Ed. 2007, 46, 2627.
|
| [16] |
Shin, E. J.; Brown, H. A.; Gonzalez, S.; Jeong, W.; Hedrick, J. L.; Waymouth, R. M. Angew. Chem., Int. Ed. 2011, 50, 6388.
doi: 10.1002/anie.201101853
pmid: 21618374
|
| [17] |
Stukenbroeker, T. S.; Solis-Ibarra, D.; Waymouth, R. M. Macromolecules 2014, 47, 8224.
|
| [18] |
Chang, Y. A.; Rudenko, A. E.; Waymouth, R. M. ACS Macro Lett. 2016, 5, 1162.
|
| [19] |
Dunn, A. L.; Landis, C. R. Macromolecules 2017, 50, 2267.
|
| [20] |
Weil, J.; Mathers, R. T.; Getzler, Y. D. Y. L. Macromolecules 2012, 45, 1118.
|
| [21] |
Castro-Osma, J. A.; Alonso-Moreno, C.; García-Martinez, J. C.; Fernández-Baeza, J.; Sánchez-Barba, L. F.; Lara-Sánchez, A.; Otero, A. Macromolecules 2013, 46, 6388.
|
| [22] |
Weidner, S. M.; Kricheldorf, H. R. Macromol. Chem. Phys. 2017, 218, 1600331.
|
| [23] |
Anker, M.; Balasanthiran, C.; Balasanthiran, V.; Chisholm, M. H.; Jayaraj, S.; Mathieu, K.; Piromjitpong, P.; Praban, S.; Raya, B.; Simonsick, W. J. Dalton Trans. 2017, 46, 5938.
|
| [24] |
Praban, S.; Piromjitpong, P.; Balasanthiran, V.; Jayaraj, S.; Chisholm, M. H.; Tantirungrotechai, J.; Phomphrai, K. Dalton Trans. 2019, 48, 3223.
|
| [25] |
Praban, S.; Yimthachote, S.; Kiriratnikom, J.; Chotchatchawankul, S.; Tantirungrotechai, J.; Phomphrai, K. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2104.
|
| [26] |
Kricheldorf, H. R.; Weidner, S. M.; Meyer, A. Polym. Chem. 2020, 11, 2182.
|
| [27] |
Kerr, R. W. F.; Ewing, P. M. D. A.; Raman, S. K.; Smith, A. D.; Williams, C. K.; Arnold, P. L. ACS Catal. 2021, 11, 1563.
|
| [28] |
Piromjitpong, P.; Ratanapanee, P.; Thumrongpatanaraks, W.; Kongsaeree, P.; Phomphrai, K. Dalton. Trans. 2012, 41, 12704.
doi: 10.1039/c2dt31678a
pmid: 22968676
|
| [29] |
Chen, C.; Cui, Y.; Mao, X.; Pan, X.; Wu, J. Macromolecules 2017, 50, 83.
|
| [30] |
Si, G.; Zhang, S.; Pang, W.; Wang, F.; Tan, C. Polymer 2018, 154, 148.
|
| [31] |
Impemba, S.; Della Monica, F.; Grassi, A.; Capacchione, C.; Milione, S. ChemSusChem 2020, 13, 141.
|
| [32] |
Goonesinghe, C.; Jung, H.-J.; Roshandel, H.; Diaz, C.; Baalbaki, H. A.; Nyamayaro, K.; Ezhova, M.; Hosseini, K.; Mehrkhodavandi, P. ACS Catal. 2022, 12, 7677.
|
| [33] |
Hu, J.; Kan, C.; Ma, H. Inorg. Chem. 2018, 57, 11240.
|
| [34] |
Gong, Y.; Ma, H. Chem. Commun. 2019, 55, 10112.
|
| [35] |
Hu, J.; Kan, C.; Wang, H.; Ma, H. Macromolecules 2018, 51, 5304.
|
| [36] |
Wang, H.; Ma, H. Macromolecules 2024, 57, 6156.
|
| [37] |
Industrial grade lactides contain trace amounts of protonic impurities such as water and lactic acid. For the vast majority of metal complexes reported in literature, complete decomposition usually occurs when industrial grade lactides are adopted for polymerization directly without purfication. Although zinc chloride complexes show significantly increased tolerance to impurities, they still undergo decomposition to a certain degree, leading to a decrease in catalytic activity.
|
| [38] |
Larrow, J. F.; Jacobsen, E. N.; Gao, Y.; Hong, Y.; Nie, X.; Zepp, C. M. J. Org. Chem. 1994, 59, 1939.
|