化学学报 ›› 2025, Vol. 83 ›› Issue (12): 1480-1487.DOI: 10.6023/A25080288 上一篇    下一篇

所属专题: “中国青年化学家”合辑

研究论文

大位阻亚胺吡啶镍催化乙烯链行走聚合制备支化聚乙烯蜡

薛虎a, 徐姗a, 王福周a,*(), 陈昶乐b,*()   

  1. a 安徽大学物质科学与信息技术研究院 合肥 230601
    b 中国科学技术大学高分子科学与工程系 合肥 230026
  • 投稿日期:2025-08-25 发布日期:2025-10-10
  • 作者简介:

    “中国青年化学家”专辑.

  • 基金资助:
    中国科学院战略性先导科技专项(XDA0540000); 国家自然科学基金(52025031); 国家自然科学基金(22261142664); 中科院稳定支持基础研究领域青年团队计划(YSBR-094)

Synthesis of Branched Polyethylene Wax using Bulky Iminopyridyl Nickel-Catalyzed Ethylene Chain-Walking Polymerization

Hu Xuea, Shan Xua, Fuzhou Wanga,*(), Changle Chenb,*()   

  1. a Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601
    b Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026
  • Received:2025-08-25 Published:2025-10-10
  • Contact: * E-mail: wangfuzhou@ahu.edu.cn;changle@ustc.edu.cn
  • About author:

    For the VSI "Rising Stars in Chemistry".

  • Supported by:
    the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA0540000); the National Natural Science Foundation of China(52025031); the National Natural Science Foundation of China(22261142664); the Chinese Academy of Sciences Project for Young Scientists in Basic Research(YSBR-094)

聚乙烯蜡具备乙烯低聚物所特有的物理特性, 可用作润滑剂、稳定剂及粘合剂, 广泛应用于塑料、橡胶、油墨和化妆品等多个领域, 其制备技术已从传统的热裂解工艺升级为催化乙烯聚合技术. 此研究合成了三种具有不同位阻效应吡啶亚胺镍催化剂Ni1~Ni3, 亚胺一侧包含具有大位阻特性的2,4,6-三(双(4-氟苯基)甲基)苯基取代基, 并探究了其在乙烯链行走聚合过程中的催化性能. 研究结果表明, 催化剂结构和聚合条件的变化直接影响乙烯的催化活性, 以及所制备聚乙烯蜡的分子量和支化度. 所有催化剂均成功合成了以甲基和长支链为主窄分散度的支化聚乙烯蜡. 通过调节聚合温度(0~75 ℃), 能够有效调控聚乙烯蜡的支化结构(15~61/1000C). 在较低温度条件下, 可获得主要含有甲基支链的粉末状聚乙烯固体. 该系列催化剂在工业常用溶剂正庚烷中, 表现出与甲苯几乎一致的卓越性能. 苯基取代的Ni2在正庚烷中的催化活性高达4.55×106 g•mol-1•h-1, 而在甲苯中则为4.72×106 g•mol-1•h-1. 该技术通过链行走聚合直接合成出支化可控的聚乙烯蜡材料, 其催化剂制备过程简洁且成本低廉, 具备高效催化性能, 对溶剂具有良好的耐受性, 有望为工业化聚乙烯蜡的高值化生产开辟新的思路和途径.

关键词: 支化聚乙烯蜡, 乙烯聚合, 亚胺吡啶镍, 链行走, 催化剂设计

Polyethylene wax has the physical properties of ethylene oligomer, and can be used as lubricant, stabilizer and adhesive. It is widely used in plastics, rubber, ink, cosmetics and other fields. Its preparation technology has been upgraded from the traditional thermal cracking process to catalytic ethylene polymerization technology. In this work, we synthesized three iminopyridyl nickel catalysts Ni1~Ni3 with different steric effects and bulky 2,4,6-tris(4-fluorophenyl)methyl substituents, and investigated their catalytic performance in ethylene chain-walking polymerization processes. Results demonstrated that catalyst structure and polymerization conditions directly influence ethylene catalytic activity, as well as the molecular weight and branching degree of the resulting polyethylene wax. All catalysts successfully produced branched polyethylene waxes with methyl groups and long side chains, exhibiting narrow dispersion. By adjusting polymerization temperature (0~75 ℃), the branching structure of polyethylene wax could be effectively controlled (15~61/1000C). A solid powder of polyethylene was obtained at lower temperatures, primarily composed of methyl branches. These catalysts exhibited nearly identical superior performance to toluene in industrial solvent n-heptane. The Ph-substituted Ni2 showed high catalytic activity of 4.55×106 g•mol-1•h-1 in n-heptane versus 4.72×106 g•mol-1•h-1 in toluene. This technology enables direct synthesis of branched polyethylene wax materials through chain-walk polymerization, featuring simple preparation, cost-effectiveness, high catalytic efficiency, and excellent solvent tolerance. It paves new pathways for high-value production of polyethylene waxes in industrial applications.

Key words: branch polyethylene wax, ethylene polymerization, iminopyridyl nickel, chain-walking, catalyst design