化学学报 ›› 2010, Vol. 68 ›› Issue (18): 1829-1836. 上一篇    下一篇

研究论文

一溴三氟丙烯灭火过程中HF的产生机理及生成量研究

周彪1,周晓猛*,1,金祥2,陈涛3   

  1. (1南开大学环境科学与工程学院 天津 300071)
    (2中国科学技术大学火灾科学国家重点实验室 合肥 230026)
    (3公安部天津消防研究所 天津 300381)
  • 投稿日期:2009-12-15 修回日期:2010-04-14 发布日期:2010-05-17
  • 通讯作者: 周晓猛 E-mail:zhouxm@nankai.edu.cn
  • 基金资助:

    洁净化学灭火气体动力学灭火机理及环境友好性研究

Research of Production Amount and Mechanism of HF in Fire Extinguishing Process using 1-Bromo-3,3,3-trifluoropropene

Zhou Biao1 Zhou Xiaomeng*,1 Jin Xiang2 Chen Tao3   

  1. (1 College of Environmental Science and Technology, Nankai University, Tianjin 300071)
    (2 State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026)
    (3 Tianjin Fire Research Institute of the Ministry of Public Security, Tianjin 300381)
  • Received:2009-12-15 Revised:2010-04-14 Published:2010-05-17

卤烃灭火介质在灭火过程中, 受热分解产生的HF不仅对火灾现场的设备具有严重的腐蚀现象, 而且对灭火现场的人员存在严重的伤害, 故HF的生成量问题一直是卤烃灭火介质评价的重要性能指标之一. 一溴三氟丙烯(简称BTP)作为可降解卤烃的一种, 被认为是具有重大应用潜力的新一代“哈龙”替代技术, 然而, 目前对于BTP在灭火过程中HF的产生机理以及生成量预测, 尚缺乏深入的认识. 本工作首先应用量子化学从头算方法, 在B3LYP/6-311++G(d,p)水平上, 对BTP在火场作用下的热分解动力学特性进行研究; 其次, 采用原位光谱诊断方法, 对BTP与火焰作用过程中HF的浓度变化进行实时在线测量, 全面评估不同工况下燃烧状况和腐蚀性气体的浓度变化情况; 再次, 以量化计算结果为基础, 通过理论分析和实验结果分析, 建立HF生成量的理论预测模型; 最后, 通过对各种实验工况下的实验结果与理论计算结果的比较, 验证HF理论计算模型的可靠性; 该论文的研究结果表明, 火焰温度以及BTP和火焰的接触时间, 为影响HF生产量的关键因素; 以量化计算结果为基础, 结合热分解动力学的理论, 构建出的HF生成量模型的计算结果和实验测量结果具有良好的一致性. 该论文的研究, 可以为优化BTP的系统设计, 减少腐蚀性气体的生成量和拓宽BTP的工程应用范围提供基础.

关键词: 哈龙替代, 一溴三氟丙烯(BTP), HF生成量, 热分解, 预测模型

In the fire-extinguishing process by halocarbon fire extinguishing agent, HF that produced by halocarbon decomposition not only has severe erosion to the metal apparatus, but also make serious harm to the people in fire scene. So the production of HF in fire extinguishing process is an important factor for the application of halocarbon fire extinguishing agent. 1-Bromo-3,3,3-trifluoropropene (BTP), as a kind of tropodegradable halocarbon, is believed to be a potential Halon replacement by fire scientists. However, the study about HF production amount and mechanism is not thorough until now. In this paper, the decomposition of BTP under different temperature is calculated by ab initio method at B3LYP/6-311++G (d,p) level firstly. And then, the production amount of HF is measured real-timely by in-situ spectral diagnostics method when BTP is discharged into the fire protection place. Furthermore, on the basis of the ab initio calculation results and theory analysis of thermodynamics, the model for predicting HF production amount is set up. Finally, by comparing the calculated results and experimental results about HF production amount, the HF production predicting theory model was validated. The research results in the paper show that the flame temperature and the interaction time between BTP and flame are key factors for the HF production amount. By the real time experimental measuring, the HF production amount predicting model that set up on the base of ab initio calculation results is proved to be veracious. The research results in this paper can provide a basis for optimizing BTP system designation and broaden the scope of BTP engineering applications.

Key words: Halon replacement, 1-bromo-3,3,3-trifluoropropene (BTP), HF production amount, thermal decomposition, prediction model