化学学报 ›› 2010, Vol. 68 ›› Issue (16): 1609-1615. 上一篇    下一篇

研究论文

焙烧温度对Ni0.3Cu0.2Zn0.5Fe2O4纳米纤维的微结构和磁性能的影响

向军1,2,沈湘黔*,2,褚艳秋1,周广振1,郭银涛1   

  1. (1江苏科技大学数理学院 镇江 212003)
    (2江苏大学材料科学与工程学院 镇江 212013)
  • 投稿日期:2010-01-10 修回日期:2010-03-30 发布日期:2010-04-08
  • 通讯作者: 沈湘黔 E-mail:shenxq@ujs.edu.cn
  • 基金资助:

    国家自然科学基金;江苏省普通高校研究生科研创新计划

Effect of Calcination Temperature on Microstructure and Magnetic Properties of Ni0.3Cu0.2Zn0.5Fe2O4 Nanofibers

Xiang Jun1,2 Shen Xiangqian*,2 Chu Yanqiu1 Zhou Guangzhen1 Guo Yintao1   

  1. (1 School of Mathematics and Physics, Jiangsu University of Science and Technology, Zhenjiang 212003)
    (2 School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013)
  • Received:2010-01-10 Revised:2010-03-30 Published:2010-04-08

采用溶胶-凝胶法结合静电纺丝技术成功制备了直径在100 nm左右的Ni0.3Cu0.2Zn0.5Fe2O4铁氧体纳米纤维. 并使用热重-差热分析(TG-DTA)、X射线衍射(XRD)、傅立叶红外变换光谱(FT-IR)、场发射扫描电镜(FE-SEM)、透射电镜(TEM)和振动样品磁强计(VSM)对电纺的复合纳米纤维及其焙烧产物进行了表征. 实验结果表明, 复合纳米纤维在450 ℃焙烧时, 立方尖晶石结构就已基本形成. 随着焙烧温度的升高, 纳米纤维中Ni0.3Cu0.2Zn0.5Fe2O4晶粒的尺寸逐渐增大, 纤维表面也越发粗糙, 其形貌逐渐向项链状结构转变. 与此同时, 目标纳米纤维的比饱和磁化强度(Ms)单调增大, 而矫顽力(Hc)则呈现先增大后减小的趋势, 在650 ℃达到最大值, 这暗示以纳米纤维形式存在的Ni0.3Cu0.2Zn0.5Fe2O4的单畴临界尺寸可能在53 nm左右. 此外, 发现在单畴临界尺寸以下, Ni0.3Cu0.2Zn0.5Fe2O4纳米纤维的矫顽力与其平均晶粒尺寸(D)的0.71次方成正比, 即HcD0.71, 较好地符合随机各向异性模型所预测的结果HcD2/3.

关键词: NiCuZn铁氧体, 纳米纤维, 静电纺丝, 磁性能, 焙烧温度

The Ni0.3Cu0.2Zn0.5Fe2O4 nanofibers with diameters of around 100 nm were successfully fabricated by sol-gel method combined with electrospinning technology. The as-spun polymer/inorganic composite nanofibers and calcined products were characterized by means of thermogravimetric and differential thermal analysis (TG-DTA), X-ray powder diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The experimental results showed that the pure spinel structure was basically formed when the composite nanofibers were calcined at 450 ℃ for 2 h. With the increase of calcination temperature, the nanofiber surface became much rougher and the nanofiber morphology gradually changed toward the necklace-like structure along with the growth of Ni0.3Cu0.2Zn0.5Fe2O4 grains contained in the nanofibers. At the same time, the specific saturation magnetization (Ms) of nanofibers monotonously increased, while the coercivity (Hc) initially increased, reached a maximum value at about 650 ℃, and then decreased with further increasing calcination temperature, indicating that the single-domain critical size of Ni0.3Cu0.2- Zn0.5Fe2O4 in the form of nanofibers may be around 53 nm. Furthermore, the relationship between the coercivity of Ni0.3Cu0.2Zn0.5Fe2O4 nanofibers and the mean grain size (D) was analyzed in a D range below the single-domain critical size. It was found that Hc of these nanofibers varied as D0.71, which was in good agreement with the predicted D2/3 dependence of Hc on the basis of the random anisotropy model.

Key words: NiCuZn ferrite, nanofiber, electrospinning, magnetic property, calcination temperature