化学学报 ›› 2013, Vol. 71 ›› Issue (04): 478-484.DOI: 10.6023/A13010024 上一篇    下一篇

研究评论

基于单壁碳纳米管的功能分子电子器件研究

刘松a, 郭雪峰a,b   

  1. a 北京大学化学与分子工程学院 北京 100871;
    b 北京大学工学院材料科学和工程系 北京 100871
  • 投稿日期:2013-01-06 发布日期:2013-02-20
  • 通讯作者: 郭雪峰 E-mail:guoxf@pku.edu.cn
  • 基金资助:

    项目受国家自然科学基金(Nos. 21225311, 51121091, 2112016)、国家重点基础研究发展计划(973) (No. 2012CB921404)、高等学校学科创新引智计划(No. B08001)和北京市科技新星(No. 2009A01)资助.

Functional Single-Walled Carbon Nanotube-based Molecular Devices

Liu Songa, Guo Xuefenga,b   

  1. a College of Chemistry and Molecular Engineering, Peking University, Beijing 100871;
    b Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871
  • Received:2013-01-06 Published:2013-02-20
  • Supported by:

    Project supported by the National Natural Science Foundation of China (Nos. 21225311, 51121091 and 2112016), the National Key Basic Research Program of China (973) (No. 2012CB921404), the 111 Project (No. B08001) and the BSTSP (No. 2009A01).

单壁碳纳米管具有完美的一维纳米结构、良好的导电性和电子弹道输运特性, 被认为是新一代电子学器件的重要基础材料. 作者介绍了两种构筑基于单壁碳纳米管的功能化场效应晶体管的策略, 使用纳米刻蚀法可以制备稳定的功能化单分子器件, 使用表面化学修饰法则提供了发展新型纳米传感器件的简易途径. 针对分子与电极间的非欧姆接触问题, 作者着重介绍了制备羧基功能化单壁碳纳米管点电极的普适性方法, 并将导电分子通过酰胺键共价嵌入碳纳米管电极之间, 从而制备稳定的单分子电子器件. 这一体系为发展无需标记、高选择性的快速单分子检测方法提供了机会, 在实际的工业应用及基础科学研究中都具有广阔的应用前景.

关键词: 单壁碳纳米管, 单分子器件, 纳米刻蚀法, 表面化学修饰

Because of the nature of their one-dimensional structure, good conductivity and excellent ballistic transport property, single-walled carbon nanotubes have been considered as an important nanomaterial in building a new generation of electrical circuits. In this article, we mainly focus on two strategies developed for installing diverse functionalities into single-walled carbon nanotube-based molecular transistors: nanolithographic method and surface chemical modification. To overcome ill-defined contacts between molecules and electrodes, we highlight the current effort and direction in the creation of reliable single-molecule devices using carboxylic acid-functionalized single-walled carbon nanotubes as nanogapped point contacts. These contacts are made by high-resolution electron beam lithography and oxygen plasma oxidative etching. Electrically functional molecules are then covalently bridged into the nanogaps through robust amide linkages, thus forming stable molecular electronic devices. These results open up new opportunities to develop unique single-molecule biosensors with high selectivity and high speed, which hold great promise in both industrial applications and basic scientific researches.

Key words: single-walled carbon nanotube, single-molecule device, nanolithography, surface chemical modification