化学学报 ›› 2020, Vol. 78 ›› Issue (9): 877-887.DOI: 10.6023/A20060216 上一篇    下一篇

综述

氧化石墨烯的表面化学修饰及纳米-生物界面作用机理

马明昊a,b, 徐明a,b,c, 刘思金a,b   

  1. a 中国科学院生态环境研究中心 环境化学与生态毒理学国家重点实验室 北京 100085;
    b 中国科学院大学 北京 100049;
    c 国科大杭州高等研究院 杭州 310024
  • 投稿日期:2020-06-08 发布日期:2020-08-05
  • 通讯作者: 徐明 E-mail:mingxu@rcees.ac.cn
  • 作者简介:马明昊,2019年于武汉大学获得学士学位,现为中国科学院生态环境研究中心硕士研究生,主要研究方向为纳米材料的生物效应与机理;徐明,副研究员,2006年和2011年于厦门大学分别获得化学学士与分析化学博士学位,2011年至2013年于法国国家科学研究院(CNRS)从事博士后研究,2014年加入中国科学院生态环境研究中心,环境化学与生态毒理学国家重点实验室.主要研究方向为重金属/人工纳米材料的健康风险与毒性机理.2018年,入选中国科学院青年创新促进会.2019年,获得国家基金委优秀青年科学基金.目前担任中国毒理学会分析毒理青年委员会副秘书长,Atomic Spectroscopy杂志编委.已发表学术论文48篇,其中第一/通讯作者论文24篇;刘思金,中国科学院生态环境研究中心研究员,环境化学与生态毒理学国家重点实验室副主任,国家杰出青年基金获得者.主要从事环境污染物的毒理与健康危害、纳米材料的生物安全性及转化毒理方面的研究.
  • 基金资助:
    项目受国家自然科学基金(Nos.21922611,21637004,21920102007)和中国科学院青年创新促进会(No.2019042)资助.

Surface Chemical Modifications of Graphene Oxide and Interaction Mechanisms at the Nano-Bio Interface

Ma Minghaoa,b, Xu Minga,b,c, Liu Sijina,b   

  1. a State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
    b University of Chinese Academy of Sciences, Beijing 100049, China;
    c School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
  • Received:2020-06-08 Published:2020-08-05
  • Supported by:
    Project supported by the National Natural Science Foundation of China (Nos. 21922611, 21637004, 21920102007) and the Youth Innovation Promotion Association CAS (No. 2019042).

由于具备独特的物理化学性质,氧化石墨烯已被广泛地应用于生命科学与人体健康等相关领域.然而,如何最大化地发挥氧化石墨烯的优势与特点,并克服其自身固有性质导致的生物不良效应,依然是当前面临的难题.为更好地了解该领域的研究现状,本文主要综述了近年来氧化石墨烯的表面化学调控和生物作用机理方面的最新研究进展.首先,简要介绍了氧化石墨烯的物理化学特性、典型的表面化学调控策略(氧化还原、羧基化、氨基化、有机小分子修饰、聚合物修饰、多肽/蛋白修饰、核酸修饰和纳米颗粒修饰),以及不同表面修饰引起的生物效应.继而,重点总结了氧化石墨烯表面修饰影响其生物效应的主要界面作用机理,包括蛋白冠形成、细胞膜损伤、膜受体作用与氧化应激损伤.最后,针对氧化石墨烯表面化学调控和生物效应与机理相关研究所面临的科学问题与挑战进行了展望.

关键词: 氧化石墨烯, 表面化学修饰, 纳米-生物界面, 作用机理, 生物效应

Due to the unique physicochemical properties, graphene oxide has been widely applied in material chemistry, biomedical science and life science. However, here is still a great challenge to maximize the advantages of graphene oxide and overcome the deleterious effects caused by its inherent properties. For a better understanding of current status in this research field, recent progress in surface chemical modifications of graphene oxide and interaction mechanisms at the nano-bio interface has been comprehensively reviewed. First, the physicochemical properties of graphene oxide and the representative strategies of surface chemical modifications will be briefly introduced, including oxidation and reduction, carboxylation, amination, small organic molecule modification, polymer modification, peptide/protein modification, nucleic acid modification and nanoparticle modification, as well as their potential roles in mediating the graphene oxide-resulted biological effects. Following, we will present the primary interaction mechanisms of pristine and surface-modified graphene oxide at the nano-bio interface, including the formation of protein corona, cell membrane damage, membrane receptor interaction and oxidative stress. Finally, the knowledge gaps and future challenges in this research field will be detailedly discussed.

Key words: graphene oxide, surface chemical modification, nano-bio interface, interaction mechanism, biological effect