化学学报 ›› 2020, Vol. 78 ›› Issue (9): 877-887.DOI: 10.6023/A20060216 上一篇 下一篇
综述
马明昊a,b, 徐明a,b,c, 刘思金a,b
投稿日期:
2020-06-08
发布日期:
2020-08-05
通讯作者:
徐明
E-mail:mingxu@rcees.ac.cn
作者简介:
马明昊,2019年于武汉大学获得学士学位,现为中国科学院生态环境研究中心硕士研究生,主要研究方向为纳米材料的生物效应与机理;徐明,副研究员,2006年和2011年于厦门大学分别获得化学学士与分析化学博士学位,2011年至2013年于法国国家科学研究院(CNRS)从事博士后研究,2014年加入中国科学院生态环境研究中心,环境化学与生态毒理学国家重点实验室.主要研究方向为重金属/人工纳米材料的健康风险与毒性机理.2018年,入选中国科学院青年创新促进会.2019年,获得国家基金委优秀青年科学基金.目前担任中国毒理学会分析毒理青年委员会副秘书长,Atomic Spectroscopy杂志编委.已发表学术论文48篇,其中第一/通讯作者论文24篇;刘思金,中国科学院生态环境研究中心研究员,环境化学与生态毒理学国家重点实验室副主任,国家杰出青年基金获得者.主要从事环境污染物的毒理与健康危害、纳米材料的生物安全性及转化毒理方面的研究.
基金资助:
Ma Minghaoa,b, Xu Minga,b,c, Liu Sijina,b
Received:
2020-06-08
Published:
2020-08-05
Supported by:
文章分享
由于具备独特的物理化学性质,氧化石墨烯已被广泛地应用于生命科学与人体健康等相关领域.然而,如何最大化地发挥氧化石墨烯的优势与特点,并克服其自身固有性质导致的生物不良效应,依然是当前面临的难题.为更好地了解该领域的研究现状,本文主要综述了近年来氧化石墨烯的表面化学调控和生物作用机理方面的最新研究进展.首先,简要介绍了氧化石墨烯的物理化学特性、典型的表面化学调控策略(氧化还原、羧基化、氨基化、有机小分子修饰、聚合物修饰、多肽/蛋白修饰、核酸修饰和纳米颗粒修饰),以及不同表面修饰引起的生物效应.继而,重点总结了氧化石墨烯表面修饰影响其生物效应的主要界面作用机理,包括蛋白冠形成、细胞膜损伤、膜受体作用与氧化应激损伤.最后,针对氧化石墨烯表面化学调控和生物效应与机理相关研究所面临的科学问题与挑战进行了展望.
马明昊, 徐明, 刘思金. 氧化石墨烯的表面化学修饰及纳米-生物界面作用机理[J]. 化学学报, 2020, 78(9): 877-887.
Ma Minghao, Xu Ming, Liu Sijin. Surface Chemical Modifications of Graphene Oxide and Interaction Mechanisms at the Nano-Bio Interface[J]. Acta Chimica Sinica, 2020, 78(9): 877-887.
[1] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. [2] Allen, M. J.; Tung, V. C.; Kaner, R. B. Chem. Rev. 2010, 110, 132. [3] Moon, P.; Koshino, M. Phys. Rev. B 2012, 85, 195458. [4] Bolotin, K.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Solid State Commun. 2008, 146, 351. [5] Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K. Phys. Rev. Lett. 2008, 100, 016602. [6] Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Science 2008, 321, 385. [7] Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8, 902. [8] Yoon, H. J.; Shanker, A.; Wang, Y.; Kozminsky, M.; Jin, Q.; Palanisamy, N.; Burness, M. L.; Azizi, E.; Simeone, D. M.; Wicha, M. S. Adv. Mater. 2016, 28, 4891. [9] Li, J.; Lyv, Z.; Li, Y.; Liu, H.; Wang, J.; Zhan, W.; Chen, H.; Chen, H.; Li, X. Biomaterials 2015, 51, 12. [10] Zou, X.; Zhang, L.; Wang, Z.; Luo, Y. J. Am. Chem. Soc. 2016, 138, 2064. [11] Ye, S.; Shao, K.; Li, Z.; Guo, N.; Zuo, Y.; Li, Q.; Lu, Z.; Chen, L.; He, Q.; Han, H. ACS Appl. Mater. Interfaces 2015, 7, 21571. [12] Palmieri, V.; Papi, M. Nano Today 2020, 33, 100883. [13] Romeroaburto, R.; Narayanan, T. N.; Nagaoka, Y.; Hasumura, T.; Mitcham, T.; Fukuda, T.; Cox, P.; Bouchard, R. R.; Maekawa, T.; Kumar, D. S. Adv. Mater. 2013, 25, 5632. [14] Yang, K.; Feng, L.; Shi, X.; Liu, Z. Chem. Soc. Rev. 2013, 42, 530. [15] Georgakilas, V.; Tiwari, J. N.; Kemp, K. C.; Perman, J. A.; Bourlinos, A. B.; Kim, K. S.; Zboril, R. Chem. Rev. 2016, 116, 5464. [16] Lin, Y.; Zhang, Y.; Li, J.; Kong, H.; Yan, Q.; Zhang, J.; Li, W.; Ren, N.; Cui, Y.; Zhang, T.; Cai, X.; Li, Q.; Li, A.; Shi, J.; Wang, L.; Zhu, Y.; Fan, C. Nano Today 2020, 35, 100922. [17] Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. Chem. Soc. Rev. 2010, 39, 228. [18] Wick, P.; Louwgaume, A. E.; Kucki, M.; Krug, H. F.; Kostarelos, K.; Fadeel, B.; Dawson, K. A.; Salvati, A.; Vazquez, E.; Ballerini, L. Angew. Chem. 2014, 53, 7714. [19] Zheng, Q.; Gudarzi, M. M.; Wang, S.; Geng, Y.; Li, Z.; Kim, J. K. Carbon 2011, 49, 2905. [20] Azevedo, J.; Costacoquelard, C.; Jegou, P.; Yu, T.; Benattar, J. J. Phys. Chem. C 2011, 115, 14678. [21] Katano, S.; Wei, T.; Sasajima, T.; Kasama, R.; Uehara, Y. Phys. Chem. Chem. Phys. 2018, 20, 17977. [22] Paredes, J. I.; Villarrodil, S.; Solisfernandez, P.; Martinezalonso, A.; Tascon, J. M. D. Langmuir 2009, 25, 5957. [23] Zheng, Q.; Li, Z.; Yang, J.; Kim, J. K. Prog. Mater Sci. 2014, 64, 200. [24] Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Adv. Mater. 2010, 22, 3906. [25] Tu, Q.; Pang, L.; Chen, Y.; Zhang, Y.; Zhang, R.; Lu, B.; Wang, J. Analyst 2014, 139, 105. [26] Mei, Q.; Zhang, K.; Guan, G.; Liu, B.; Wang, S.; Zhang, Z. Chem. Commun. 2010, 46, 7319. [27] Paredes, J. I.; Villarrodil, S.; Martinezalonso, A.; Tascon, J. M. D. Langmuir 2008, 24, 10560. [28] Liu, Z.; Robinson, J. T.; Sun, X.; Dai, H. J. Am. Chem. Soc. 2008, 130, 10876. [29] Shi, L.; Pang, H. W.; Wang, X. X.; Zhang, P.; Yu, S. J. Acta Chim. Sinica 2019, 77, 1177(in Chinese). (石磊, 庞宏伟, 王祥学, 张盼, 于淑君, 化学学报, 2019, 77, 1177.) [30] Zhou, Y.; Bao, Q.; Tang, L. A. L.; Zhong, Y. L.; Loh, K. P. Chem. Mater. 2009, 21, 2950. [31] Majeed, W.; Bourdo, S.; Petibone, D. M.; Saini, V.; Vang, K. B.; Nima, Z. A.; Alghazali, K. M.; Darrigues, E.; Ghosh, A.; Watanabe, F. J. Appl. Toxicol. 2017, 37, 462. [32] Pareek, S.; Jain, D.; Shrivastava, R.; Dam, S.; Hussain, S.; Behera, D. Mater. Res. Express 2019, 6, 8. [33] Leconte, N.; Moser, J.; Ordejon, P.; Tao, H.; Lherbier, A.; Bachtold, A.; Alsina, F.; Torres, C. M. S.; Charlier, J.; Roche, S. ACS Nano. 2010, 4, 4033. [34] Jaworski, S.; Sawosz, E.; Kutwin, M.; Wierzbicki, M.; Hinzmann, M.; Grodzik, M.; Winnicka, A.; Lipinska, L.; Wlodyga, K.; Chwalibog, A. Int. J. Nanomed. 2015, 10, 1585. [35] Chng, E. L. K.; Pumera, M. Chem.-Eur. J. 2013, 19, 8227. [36] Handayani, M.; Ganta, M.; Susilo, D.; Yahya, S.; Sunnardianto, G.; Darsono, N.; Sulistiyono, E.; Setiawan, I.; Lestari, F.; Erryani, A. IOP Conf. Ser.:Mater. Sci. Eng. 2019, 541, 012032. [37] Pei, S.; Cheng, H. Carbon 2012, 50, 3210. [38] Gao, W.; Alemany, L. B.; Ci, L.; Ajayan, P. M. Nat. Chem. 2009, 1, 403. [39] Lee, Y. K.; Choi, H.; Lee, C.; Lee, H.; Goddeti, K. C.; Moon, S. Y.; Doh, W. H.; Baik, J.; Kim, J.; Choi, J. S. Nanoscale. 2016, 8, 11494. [40] Koivistoinen, J.; Sladkova, L.; Aumanen, J.; Koskinen, P.; Roberts, K.; Johansson, A.; Myllyperkio, P.; Pettersson, M. J. Phys. Chem. C 2016, 120, 22330. [41] Parvez, K.; Wu, Z.; Li, R.; Liu, X.; Graf, R.; Feng, X.; Mullen, K. J. Am. Chem. Soc. 2014, 136, 6083. [42] Hossain, S. T.; Wang, R. Electrochimica Acta 2016, 216, 253. [43] Chang, Y.; Yang, S.; Liu, J.; Dong, E.; Wang, Y.; Cao, A.; Liu, Y.; Wang, H. Toxicol. Lett. 2011, 200, 201. [44] Das, S.; Singh, S.; Singh, V.; Joung, D.; Dowding, J. M.; Reid, D. L.; Anderson, J. M.; Zhai, L.; Khondaker, S. I.; Self, W. T. Part. Part. Syst. Charact. 2013, 30, 148. [45] Li, R.; Guiney, L. M.; Chang, C. H.; Mansukhani, N. D.; Ji, Z.; Wang, X.; Liao, Y. P.; Jiang, W.; Sun, B.; Hersam, M. C. ACS Nano 2018, 12, 1390. [46] Wu, Y.; Wang, F.; Wang, S.; Ma, J.; Xu, M.; Gao, M.; Liu, R.; Chen, W.; Liu, S. Nanoscale 2018, 10, 14637. [47] Miao, Z.; Li, X.; Zhi, L. RSC Adv. 2016, 6, 58561. [48] Fang, X.; Liu, X.; Cui, Z.-K.; Qian, J.; Pan, J.; Li, X.; Zhuang, Q. J. Mater. Chem. A 2015, 3, 10005. [49] Azadbakht, A.; Abbasi, A. R.; Derikvand, Z.; Karimi, Z. Monatshefte für Chemie-Chemical Monthly 2016, 147, 705. [50] Chiu, N.; Fan, S. Y.; Du Yang, C.; Huang, T. Y. Biosens. Bioelectron. 2017, 89, 370. [51] Eng, A. Y. S.; Sofer, Z.; Sedmidubský, D.; Pumera, M. ACS Nano. 2017, 11, 1789. [52] Lammel, T.; Boisseaux, P.; Fernandezcruz, M.; Navas, J. M. Part. Fibre Toxicol. 2013, 10, 27. [53] Li, J.; Zhang, X.; Jiang, J.; Wang, Y.; Jiang, H.; Zhang, J.; Nie, X.; Liu, B. Toxicol. Sci. 2019, 167, 269. [54] Liu, Y.; Han, W.; Xu, Z.; Fan, W.; Peng, W.; Luo, S. Environ. Pollut. 2018, 237, 218. [55] Singh, S. K.; Singh, M. K.; Kulkarni, P. P.; Sonkar, V. K.; Grácio, J. J. A.; Dash, D. ACS Nano. 2012, 6, 2731. [56] Zhang, W.; Ma, J.; Gao, D.; Zhou, Y.; Li, C.; Zha, J.; Zhang, J. Prog. Org. Coat. 2016, 94, 9. [57] Madadrang, C. J.; Kim, H. Y.; Gao, G.; Wang, N.; Zhu, J.; Feng, H.; Gorring, M.; Kasner, M.; Hou, S. ACS Appl. Mater. Interfaces 2012, 4, 1186. [58] Najafi, F.; Moradi, O.; Rajabi, M.; Asif, M.; Tyagi, I.; Agarwal, S.; Gupta, V. K. J. Mol. Liq. 2015, 208, 106. [59] Mei, L.; Lin, C.; Cao, F.; Yang, D.; Jia, X.; Hu, S.; Miao, X.; Wu, P. ACS Appl. Nano Mater. 2019, 2, 2902. [60] Rive, C.; Reina, G.; Wagle, P.; Treossi, E.; Palermo, V.; Bianco, A.; Delogu, L. G.; Rieckher, M.; Schumacher, B. Small 2019, 15, 1902699. [61] Eigler, S.; Hirsch, A. Angew. Chem. 2014, 53, 7720. [62] Mallakpour, S.; Abdolmaleki, A.; Borandeh, S. Appl. Surf. Sci. 2014, 307, 533. [63] Goreham, R. V.; Schroeder, K. L.; Holmes, A.; Bradley, S. J.; Nann, T. Mikrochim. Acta. 2018, 185, 128. [64] Wang, C.; Zhang, Z.; Chen, B.; Gu, L.; Li, Y.; Yu, S. J. Colloid Interface Sci. 2018, 516, 332. [65] Thapa, R. K.; Byeon, J. H.; Ku, S.; Yong, C. S.; Kim, J. O. Npg Asia Materials. 2017, 9, e416. [66] Yasoda, K. Y.; Bobba, K. N.; Nedungadi, D.; Dutta, D.; Kumar, M. S.; Kothurkar, N. K.; Mishra, N.; Bhuniya, S. RSC Adv. 2016, 6, 62385. [67] Deb, A.; Vimala, R. J. Drug Deliv. Sci. Technol. 2018, 43, 333. [68] Singh, M.; Gupta, P.; Baronia, R.; Singh, P.; Karuppiah, S.; Shanker, R.; Dwivedi, P. D.; Singh, S. P. Int. J. Nanomed. 2018, 13, 107. [69] Liu, G.; Shen, H.; Mao, J.; Zhang, L.; Jiang, Z.; Sun, T.; Lan, Q.; Zhang, Z. ACS Appl. Mater. Interfaces 2013, 5, 6909. [70] Zhang, L.; Xia, J.; Zhao, Q.; Liu, L.; Zhang, Z. Small 2010, 6, 537. [71] Sasidharan, A.; Swaroop, S.; Koduri, C. K.; Girish, C. M.; Chandran, P.; Panchakarla, L. S.; Somasundaram, V. H.; Gowd, G. S.; Nair, S. V.; Koyakutty, M. Carbon 2015, 95, 511. [72] Liu, Z.; Robinson, J. T.; Sun, X.; Dai, H. J. Am. Chem. Soc. 2008, 130, 10876. [73] de Sousa, M.; Visani de Luna, L. A.; Fonseca, L. C.; Giorgio, S.; Alves, O. L. ACS Appl. Nano Mater. 2018, 1, 922. [74] Shen, H.; Liu, M.; He, H.; Zhang, L.; Huang, J.; Chong, Y.; Dai, J.; Zhang, Z. ACS Appl. Mater. Interfaces 2012, 4, 6317. [75] Luo, N.; Weber, J. K.; Wang, S.; Luan, B.; Yue, H.; Xi, X.; Du, J.; Yang, Z.; Wei, W.; Zhou, R. Nat. Commun. 2017, 8, 14537. [76] Mendonca, M. C. P.; Soares, E. S.; De Jesus, M. B.; Ceragioli, H. J.; Batista, Â. G.; Nyultoth, A.; Molnar, J.; Wilhelm, I.; Marostica, M. R.; Krizbai, I. A. Mol. Pharm. 2016, 13, 3913. [77] Xu, M.; Zhu, J.; Wang, F.; Xiong, Y.; Wu, Y.; Wang, Q.; Weng, J.; Zhang, Z.; Chen, W.; Liu, S. ACS Nano 2016, 10, 3267. [78] Bao, H.; Pan, Y.; Ping, Y.; Sahoo, N. G.; Wu, T.; Li, L.; Li, J.; Gan, L. H. Small 2011, 7, 1569. [79] Liao, K.; Lin, Y. S.; Macosko, C. W.; Haynes, C. L. ACS Appl. Mater. Interfaces 2011, 3, 2607. [80] Bao, H.; Hu, J.; Gan, L. H.; Li, L. J. Polym. Sci., Part A:Polym. Chem. 2009, 47, 6682. [81] Liu, Y.; Ai, K.; Lu, L. Chem. Rev. 2014, 114, 5057. [82] Liu, M.; Zeng, G.; Wang, K.; Wan, Q.; Tao, L.; Zhang, X.; Wei, Y. Nanoscale 2016, 8, 16819. [83] Hu, D.; Zhang, J.; Gao, G.; Sheng, Z.; Cui, H.; Cai, L. Theranostics 2016, 6, 1043. [84] Wong, S.; Shim, M. S.; Kwon, Y. J. J. Mater. Chem. B 2014, 2, 595. [85] Adibimotlagh, B.; Lotfi, A. S.; Rezaei, A.; Hashemi, E. Mater. Sci. Eng. C 2018, 82, 323. [86] Guo, C. X.; Ng, S. R.; Khoo, S. Y.; Zheng, X. T.; Chen, P.; Li, C. M. ACS Nano 2012, 6, 6944. [87] Chiu, N.; Huang, T. Y.; Lai, H.; Liu, K. C. Nanoscale Res. Lett. 2014, 9, 445. [88] Li, Y.; Lu, Q.; Liu, H.; Wang, J.; Zhang, P.; Liang, H.; Jiang, L.; Wang, S. Adv. Mater. 2015, 27, 6848. [89] Wang, B.; Song, Y.; Ge, L.; Zhang, S.; Ma, L. RSC Adv. 2019, 9, 9379. [90] Goenka, S.; Sant, V.; Sant, S. J. Controlled Release. 2014, 173, 75. [91] Draz, M. S.; Fang, B. A.; Zhang, P.; Hu, Z.; Gu, S.; Weng, K. C.; Gray, J. W.; Chen, F. F. Theranostics 2014, 4, 872. [92] Yang, X.; Niu, G.; Cao, X.; Wen, Y.; Xiang, R.; Duan, H.; Chen, Y. J. Mater. Chem. 2012, 22, 6649. [93] De Lazaro, I.; Vranic, S.; Marson, D.; Rodrigues, A. F.; Buggio, M.; Estebanarranz, A.; Mazza, M.; Posocco, P.; Kostarelos, K. Nanoscale 2019, 11, 13863. [94] Bonanni, A.; Ambrosi, A.; Pumera, M. Chem.-Eur. J. 2012, 18, 1668. [95] Wang, G.; Ma, Y.; Wei, Z.; Qi, M. Chem. Eng. J. 2016, 289, 150. [96] Liu, Y.; Guan, M.; Feng, L.; Deng, S.; Bao, J.; Xie, S.; Chen, Z.; Huang, R.; Zheng, L. Nanotechnology 2013, 24, 025604. [97] Wang, N.; Lin, M.; Dai, H.; Ma, H. Biosens. Bioelectron. 2016, 79, 320. [98] Xie, X.; Mao, C.; Liu, X.; Zhang, Y.; Cui, Z.; Yang, X.; Yeung, K. W. K.; Pan, H.; Chu, P. K.; Wu, S. ACS Appl. Mater. Interfaces 2017, 9, 26417. [99] Yuan, B.; Hu, Y.; Chen, X.; Shi, Y.; Niu, Y.; Zhang, Y.; He, S.; Dai, H. Composites, Part A 2017, 100, 106. [100] Pan, N.; Li, L.; Ding, J.; Li, S.; Wang, R.; Jin, Y.; Wang, X.; Xia, C. J. Hazard. Mater. 2016, 309, 107. [101] Li, X.; Huang, X.; Liu, D.; Wang, X.; Song, S.; Zhou, L.; Zhang, H. J. Phys. Chem. C 2011, 115, 21567. [102] Kim, T. I.; Kwon, B.; Yoon, J.; Park, I. J.; Bang, G. S.; Park, Y.; Seo, Y.; Choi, S. ACS Appl. Mater. Interfaces 2017, 9, 7908. [103] Liu, Y.; Peng, J.; Wang, S.; Xu, M.; Gao, M.; Xia, T.; Weng, J.; Xu, A.; Liu, S. NPG Asia Mater. 2018, 10, e458. [104] Urbas, K.; Aleksandrzak, M.; Jedrzejczak, M.; Jedrzejczak, M.; Rakoczy, R.; Chen, X.; Mijowska, E. Nanoscale Res. Lett. 2014, 9, 656. [105] Kavinkumar, T.; Varunkumar, K.; Ravikumar, V.; Manivannan, S. J. Colloid Interface Sci. 2017, 505, 1125. [106] Liu, N.; Tang, M.; Ding, J. Chemosphere. 2020, 245, 125624. [107] Syama, S.; Mohanan, P. V. Nano-micro Lett. 2019, 11, 1. [108] Chong, Y.; Ge, C.; Yang, Z.; Garate, J. A.; Gu, Z.; Weber, J. K.; Liu, J.; Zhou, R. ACS Nano 2015, 9, 5713. [109] Duan, G.; Kang, S.; Tian, X.; Garate, J. A.; Zhao, L.; Ge, C.; Zhou, R. Nanoscale 2015, 7, 15214. [110] Hu, W.; Peng, C.; Lv, M.; Li, X.; Zhang, Y.; Chen, N.; Fan, C.; Huang, Q. ACS Nano 2011, 5, 3693. [111] Hajipour, M. J.; Raheb, J.; Akhavan, O.; Arjmand, S.; Mashinchian, O.; Rahman, M.; Abdolahad, M.; Serpooshan, V.; Laurent, S.; Mahmoudi, M. Nanoscale 2015, 7, 8978. [112] Kostarelos, K.; Novoselov, K. S. Science 2014, 344, 261. [113] Li, Y.; Yuan, H.; Bussche, A. V. D.; Creighton, M. A.; Hurt, R. H.; Kane, A. B.; Gao, H. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 12295. [114] Giulio, M. D.; Zappacosta, R.; Lodovico, S. D.; Campli, E. D.; Siani, G.; Fontana, A.; Cellini, L. Antimicrob. Agents Chemother. 2018, 62, e00547-18. [115] Liu, S.; Hu, M.; Zeng, T. H.; Wu, R.; Jiang, R.; Wei, J.; Wang, L.; Kong, J.; Chen, Y. Langmuir 2012, 28, 12364. [116] Tu, Y.; Lv, M.; Xiu, P.; Huynh, T.; Zhang, M.; Castelli, M.; Liu, Z.; Huang, Q.; Fan, C.; Fang, H. Nat. Nanotechnol. 2013, 8, 594. [117] Duan, G.; Zhang, Y.; Luan, B.; Weber, J. K.; Zhou, R. W.; Yang, Z.; Zhao, L.; Xu, J.; Luo, J.; Zhou, R. Sci. Rep. 2017, 7, 42767. [118] Zhu, J.; Xu, M.; Gao, M.; Zhang, Z.; Xu, Y.; Xia, T.; Liu, S. ACS Nano 2017, 11, 2637. [119] Sasidharan, A.; Panchakarla, L. S.; Chandran, P.; Menon, D.; Nair, S. V.; Rao, C. N. R.; Koyakutty, M. Nanoscale 2011, 3, 2461. [120] Ema, M.; Gamo, M.; Honda, K. Regul. Toxicol. Pharmacol. 2017, 85, 7. [121] An, W.; Zhang, Y.; Zhang, X.; Li, K.; Kang, Y.; Akhtar, S.; Sha, X.; Gao, L. Exp. Eye Res. 2018, 174, 59. [122] Sengupta, I.; Bhattacharya, P.; Talukdar, M.; Neogi, S.; Pal, S. K.; Chakraborty, S. Colloid Interface Sci. Commun. 2019, 28, 60. [123] Zucker, I.; Werber, J. R.; Fishman, Z. S.; Hashmi, S. M.; Gabinet, U. R.; Lu, X.; Osuji, C. O.; Pfefferle, L. D.; Elimelech, M. Environ. Sci. Technol. Lett. 2017, 4, 404. [124] Moore, T. C.; Yang, A. H.; Ogungbesan, O.; Hartkamp, R.; Iacovella, C. R.; Zhang, Q.; McCabe, C. J. Phys. Chem. B 2019, 123, 7711. [125] Chen, G.; Yang, H.; Lu, C.; Chao, Y.; Hwang, S.; Chen, C.; Lo, K.; Sung, L.; Luo, W.; Tuan, H. Biomaterials 2012, 33, 6559. [126] Ma, J.; Liu, R.; Wang, X.; Liu, Q.; Chen, Y.; Valle, R. P.; Zuo, Y. Y.; Xia, T.; Liu, S. ACS Nano 2015, 9, 10498. [127] Qu, G.; Liu, S.; Zhang, S.; Wang, L.; Wang, X.; Sun, B.; Yin, N.; Gao, X.; Xia, T.; Chen, J. ACS Nano 2013, 7, 5732. [128] Zhang, Y.; Ma, C.; Wang, Z.; Zhou, Q.; Sun, S.; Ma, P.; Lv, L.; Jiang, X.; Wang, X.; Zhan, L. Nanoscale 2020, 12, 8147. [129] Zhang, J.; Sun, T.; Niu, A.; Tang, Y.; Deng, S.; Luo, W.; Xu, Q.; Wei, D.; Pei, D. Biomaterials 2017, 133, 49. [130] Singh, S. K.; Singh, M. K.; Nayak, M. K.; Kumari, S.; Shrivastava, S.; Gracio, J.; Dash, D. ACS Nano 2011, 5, 4987. [131] Sun, Y.; Dai, H.; Chen, S.; Xu, M.; Wang, X.; Zhang, Y.; Xu, S.; Xu, A.; Weng, J.; Liu, S. Nanotoxicology 2018, 12, 117. [132] Tian, J.; Luo, Y.; Huang, L.; Feng, Y.; Ju, H.; Yu, B. Biosens. Bioelectron. 2016, 80, 519. [133] Zhao, X.; Liu, P. RSC Adv. 2014, 4, 24232. [134] Li, Y.; Wu, Q.; Zhao, Y.; Bai, Y.; Chen, P.; Xia, T.; Wang, D. ACS Nano 2014, 8, 2100. [135] Sydlik, S. A.; Jhunjhunwala, S.; Webber, M. J.; Anderson, D. G.; Langer, R. ACS Nano 2015, 9, 3866. [136] Akhavan, O.; Ghaderi, E.; Emamy, H.; Akhavan, F. Carbon 2013, 54, 419. [137] Gurunathan, S.; Han, J. W.; Dayem, A. A.; Eppakayala, V.; Kim, J. Int. J. Nanomed. 2012, 7, 5901. [138] Zhang, M.; Yu, Q.; Liang, C.; Liu, Z.; Zhang, B.; Li, M. Ecotoxicol. Environ. Saf. 2016, 132, 372. [139] Mohamed, H. R. H.; Welson, M.; Yaseen, A. E.; Elghor, A. A. Environ. Sci. Pollut. Res. 2020, 27, 264. [140] Duch, M. C.; Budinger, G. R. S.; Liang, Y. T.; Soberanes, S.; Urich, D.; Chiarella, S. E.; Campochiaro, L.; Gonzalez, A.; Chandel, N. S.; Hersam, M. C. Nano Lett. 2011, 11, 5201. [141] Liu, X.; Sen, S.; Liu, J.; Kulaots, I.; Geohegan, D. B.; Kane, A. B.; Puretzky, A. A.; Rouleau, C. M.; More, K. L.; Palmore, G. T. R. Small 2011, 7, 2775. [142] Liu, S.; Zeng, T. H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R.; Kong, J.; Chen, Y. ACS Nano 2011, 5, 6971. [143] Dutta, T.; Sarkar, R.; Pakhira, B.; Ghosh, S.; Sarkar, R.; Barui, A.; Sarkar, S. RSC Adv. 2015, 5, 80192. [144] Qiu, Y.; Wang, Z.; Owens, A. C. E.; Kulaots, I.; Chen, Y.; Kane, A. B.; Hurt, R. H. Nanoscale 2014, 6, 11744. [145] Chowdhuri, A. R.; Tripathy, S.; Chandra, S.; Roy, S.; Sahu, S. K. RSC Adv. 2015, 5, 49420. [146] Parsa, A.; Salout, S. A. J. Electroanal. Chem. 2016, 760, 113. [147] Zhao, K. L.; Hao, Y.; Zhu, M.; Cheng, G. S. Acta Chim. Sinica 2018, 76, 168(in Chinese). (赵克丽, 郝莹, 朱墨, 程国胜, 化学学报, 2018, 76, 168.) [148] Xu, M.; Soliman, M. G.; Sun, X.; Pelaz, B.; Feliu, N.; Parak, W. J.; Liu, S. ACS Nano 2018, 12, 10104. |
[1] | 刘稳, 王昱捷, 杨慧琴, 李成杰, 吴娜, 颜洋. 离子液体非共价诱导制备碳纳米管/石墨烯集流体用于钠金属负极[J]. 化学学报, 2023, 81(10): 1379-1386. |
[2] | 胡文敬, 李久盛. 双/三氮杂冠醚化合物的合成及其作为摩擦改进剂的性能研究※[J]. 化学学报, 2022, 80(3): 310-316. |
[3] | 李海梅, 罗华健, 肖琦, 杨立云, 黄珊, 刘义. 手性石墨烯量子点与DNA相互作用及其机制研究[J]. 化学学报, 2020, 78(6): 577-586. |
[4] | 宋光捷, 武调弟, 刘福鑫, 张彬雁, 刘秀辉. 壳聚糖/氮掺杂还原氧化石墨烯修饰电极对黄嘌呤的检测及尿酸抑制的研究[J]. 化学学报, 2020, 78(1): 82-88. |
[5] | 卢静荷, 谭淑珍, 朱雨清, 李伟, 陈天啸, 王瑶, 刘陈. 荧光核酸适配体功能化氧化石墨烯生物传感器用于快速检测氯霉素[J]. 化学学报, 2019, 77(3): 253-256. |
[6] | 石磊, 庞宏伟, 王祥学, 张盼, 于淑君. 氧化石墨烯在水体中的迁移转化机制研究[J]. 化学学报, 2019, 77(11): 1177-1183. |
[7] | 邓邦为, 孙大明, 万琦, 王昊, 陈滔, 李璇, 瞿美臻, 彭工厂. 锂离子电池三元正极材料电解液添加剂的研究进展[J]. 化学学报, 2018, 76(4): 259-277. |
[8] | 宋聪颖, 孙逊, 叶克, 朱凯, 程魁, 闫俊, 曹殿学, 王贵领. 还原氧化石墨烯修饰泡沫镍原位负载MnO2对H2O2电还原反应催化性能的研究[J]. 化学学报, 2017, 75(10): 1003-1009. |
[9] | 童震坤, 方姗, 郑浩, 张校刚. 锗酸锌纳米棒@石墨烯复合负极材料的制备及储锂性质[J]. 化学学报, 2016, 74(2): 185-190. |
[10] | 黄国家, 陈志刚, 李茂东, 杨波, 辛明亮, 李仕平, 尹宗杰. 石墨烯和氧化石墨烯的表面功能化改性[J]. 化学学报, 2016, 74(10): 789-799. |
[11] | 兀晓文, 杜娜, 李海平, 张人杰, 侯万国. 喜树碱/氧化石墨烯/类水滑石纳米杂化物的制备及表征[J]. 化学学报, 2014, 72(8): 963-969. |
[12] | 于小雯, 盛凯旋, 陈骥, 李春, 石高全. 基于石墨烯修饰电极的电化学生物传感[J]. 化学学报, 2014, 72(3): 319-332. |
[13] | 李晓利, 王愈聪, 张学晶, 赵云颉, 刘成辉, 李正平. 双链特异性核酸酶介导的高灵敏度microRNA分析[J]. 化学学报, 2014, 72(3): 395-400. |
[14] | 黄骅隽, 任重磊, 陈宇, 杨万泰, 邓建平. 胆酸手性化氧化石墨烯杂化材料的制备及性能研究[J]. 化学学报, 2014, 72(11): 1169-1174. |
[15] | 来常伟, 孙莹, 杨洪, 张雪勤, 林保平. 通过“点击化学”对石墨烯和氧化石墨烯进行功能化改性[J]. 化学学报, 2013, 71(9): 1201-1224. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||