[1] Jiang, F.; Doudna, J. A. Annu. Rev. Biophys. 2017, 46, 505. [2] Garcia-Doval, C.; Jinek, M. Curr. Opin. Struct. Biol. 2017, 47, 157. [3] Makarova, K. S.; Haft, D. H.; Barrangou, R.; Brouns, S. J.; Charpentier, E.; Horvath, P.; Moineau, S.; Mojica, F. J.; Wolf, Y. I.; Yakunin, A. F.; van der Oost, J.; Koonin, E. V. Nat. Rev. Microbiol. 2011, 9, 467. [4] Wang, H.; La Russa, M.; Qi, L. S. Annu. Rev. Biochem. 2016, 85, 227. [5] Nunez, J. K.; Harrington, L. B.; Doudna, J. A. ACS Chem. Biol. 2016, 11, 681. [6] Gasiunas, G.; Barrangou, R.; Horvath, P.; Siksnys, V. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 15539. [7] Gutschner, T.; Haemmerle, M.; Genovese, G.; Draetta, G. F.; Chin, L. Cell Rep. 2016, 14, 1555. [8] Dow, L. E. Trends Mol. Med. 2015, 21, 609. [9] Pickar-Oliver, A.; Gersbach, C. A. Nat. Rev. Mol. Cell Biol. 2019, 20, 490. [10] LaFountaine, J. S.; Fathe, K.; Smyth, H. D. Int. J. Pharm. 2015, 494, 180. [11] Gupta, R. M.; Musunuru, K. J. Clin. Invest. 2014, 124, 4154. [12] Gaj, T.; Gersbach, C. A.; Barbas, C. F. Trends Biotechnol. 2013, 31, 397. [13] Doudna, J. A.; Charpentier, E. Science 2014, 346, 1258096. [14] Hsu, P. D.; Lander, E. S.; Zhang, F. Cell 2014, 157, 1262. [15] Platt, R. J.; Chen, S.; Zhou, Y.; Yim, M. J.; Swiech, L.; Kempton, H. R.; Dahlman, J. E.; Parnas, O.; Eisenhaure, T. M.; Jovanovic, M.; Graham, D. B.; Jhunjhunwala, S.; Heidenreich, M.; Xavier, R. J.; Langer, R.; Anderson, D. G.; Hacohen, N.; Regev, A.; Feng, G.; Sharp, P. A.; Zhang, F. Cell 2014, 159, 440. [16] Carroll, K. J.; Makarewich, C. A.; McAnally, J.; Anderson, D. M.; Zentilin, L.; Liu, N.; Giacca, M.; Bassel-Duby, R.; Olson, E. N. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 338. [17] Wang, T.; Wei, J. J.; Sabatini, D. M.; Lander, E. S. Science 2014, 343, 80. [18] Behan, F. M.; Iorio, F.; Picco, G.; Goncalves, E.; Beaver, C. M.; Migliardi, G.; Santos, R.; Rao, Y.; Sassi, F.; Pinnelli, M.; Ansari, R.; Harper, S.; Jackson, D. A.; McRae, R.; Pooley, R.; Wilkinson, P.; van der Meer, D.; Dow, D.; Buser-Doepner, C.; Bertotti, A.; Trusolino, L.; Stronach, E. A.; Saez-Rodriguez, J.; Yusa, K.; Garnett, M. J. Nature 2019, 568, 511. [19] Didovyk, A.; Borek, B.; Tsimring, L.; Hasty, J. Curr. Opin. Biotechnol. 2016, 40, 177. [20] Nihongaki, Y.; Furuhata, Y.; Otabe, T.; Hasegawa, S.; Yoshimoto, K.; Sato, M. Nat. Methods 2017, 14, 963. [21] Ma, Y.; Wang, M.; Li, W.; Zhang, Z.; Zhang, X.; Wu, G.; Tan, T.; Cui, Z.; Zhang, X. E. Anal. Chem. 2017, 89, 12896. [22] Chen, B.; Zou, W.; Xu, H.; Liang, Y.; Huang, B. Nat. Commun. 2018, 9, 1. [23] Wang, X.; Xiong, E.; Tian, T.; Cheng, M.; Lin, W.; Wang, H.; Zhang, G.; Sun, J.; Zhou, X. ACS Nano 2020, 14, 2497. [24] Xu, W.; Jin, T.; Dai, Y.; Liu, C. C. Biosens. Bioelectron. 2020, 155, 112100. [25] De Ravin, S. S.; Li, L.; Wu, X.; Choi, U.; Allen, C.; Koontz, S.; Lee, J.; Theobald-Whiting, N.; Chu, J.; Garofalo, M.; Sweeney, C.; Kardava, L.; Moir, S.; Viley, A.; Natarajan, P.; Su, L.; Kuhns, D.; Zarember, K. A.; Peshwa, M. V.; Malech, H. L. Sci. Transl. Med. 2017, 9, eaah3480. [26] Park, H.; Oh, J.; Shim, G.; Cho, B.; Chang, Y.; Kim, S.; Baek, S.; Kim, H.; Shin, J.; Choi, H.; Yoo, J.; Kim, J.; Jun, W.; Lee, M.; Lengner, C. J.; Oh, Y. K.; Kim, J. Nat. Neurosci. 2019, 22, 524. [27] Fu, Y.; Foden, J. A.; Khayter, C.; Maeder, M. L.; Reyon, D.; Joung, J. K.; Sander, J. D. Nat. Biotechnol. 2013, 31, 822. [28] Cradick, T. J.; Fine, E. J.; Antico, C. J.; Bao, G. Nucleic Acids Res. 2013, 41, 9584. [29] Lin, Y.; Cradick, T. J.; Brown, M. T.; Deshmukh, H.; Ranjan, P.; Sarode, N.; Wile, B. M.; Vertino, P. M.; Stewart, F. J.; Bao, G. Nucleic Acids Res. 2014, 42, 7473. [30] Wu, X.; Scott, D. A.; Kriz, A. J.; Chiu, A. C.; Hsu, P. D.; Dadon, D. B.; Cheng, A. W.; Trevino, A. E.; Konermann, S.; Chen, S.; Jaenisch, R.; Zhang, F.; Sharp, P. A. Nat. Biotechnol. 2014, 32, 670. [31] Dominguez, A. A.; Lim, W. A.; Qi, L. S. Nat. Rev. Mol. Cell Biol. 2016, 17, 5. [32] Knott, G. J.; Doudna, J. A. Science 2018, 361, 866. [33] Zhang, X.-H.; Tee, L. Y.; Wang, X.-G.; Huang, Q.-S.; Yang, S.-H. Mol. Ther. Nucleic Acids 2015, 4, e264. [34] Ran, F. A.; Hsu, P. D.; Lin, C. Y.; Gootenberg, J. S.; Konermann, S.; Trevino, A. E.; Scott, D. A.; Inoue, A.; Matoba, S.; Zhang, Y.; Zhang, F. Cell 2013, 154, 1380. [35] Fu, Y.; Sander, J. D.; Reyon, D.; Cascio, V. M.; Joung, J. K. Nat. Biotechnol. 2014, 32, 279. [36] Guilinger, J. P.; Thompson, D. B.; Liu, D. R. Nat. Biotechnol. 2014, 32, 577. [37] Nihongaki, Y.; Otabe, T.; Sato, M. Anal. Chem. 2018, 90, 429. [38] Cai, W.; Luo, T.; Mao, L; Wang, M. Angew. Chem. Int. Ed. 2020, 10.1002/ange.202005644. [39] Hsu, P. D.; Scott, D. A.; Weinstein, J. A.; Ran, F. A.; Konermann, S.; Agarwala, V.; Li, Y.; Fine, E. J.; Wu, X.; Shalem, O.; Cradick, T. J.; Marraffini, L. A.; Bao, G.; Zhang, F. Nat. Biotechnol. 2013, 31, 827. [40] Mandegar, M. A.; Huebsch, N.; Frolov, E. B.; Shin, E.; Truong, A.; Olvera, M. P.; Chan, A. H.; Miyaoka, Y.; Holmes, K.; Spencer, C. I.; Judge, L. M.; Gordon, D. E.; Eskildsen, T. V.; Villalta, J. E.; Horlbeck, M. A.; Gilbert, L. A.; Krogan, N. J.; Sheikh, S. P.; Weissman, J. S.; Qi, L. S.; So, P. L.; Conklin, B. R. Cell Stem Cell 2016, 18, 541. [41] Hoffmann, M. D.; Aschenbrenner, S.; Grosse, S.; Rapti, K.; Domenger, C.; Fakhiri, J.; Mastel, M.; Borner, K.; Eils, R.; Grimm, D.; Niopek, D. Nucleic Acids Res. 2019, 47, e75. [42] Hirosawa, M.; Fujita, Y.; Saito, H. ACS Synth. Biol. 2019, 8, 1575. [43] Hanewich-Hollatz, M. H.; Chen, Z.; Hochrein, L. M.; Huang, J.; Pierce, N. A. ACS Cent. Sci. 2019, 5, 1241. [44] Zetsche, B.; Volz, S. E.; Zhang, F. Nat. Biotechnol. 2015, 33, 139. [45] Davis, K. M.; Pattanayak, V.; Thompson, D. B.; Zuris, J. A.; Liu, D. R. Nat. Chem. Biol. 2015, 11, 316. [46] Liu, K. I.; Ramli, M. N.; Woo, C. W.; Wang, Y.; Zhao, T.; Zhang, X.; Yim, G. R.; Chong, B. Y.; Gowher, A.; Chua, M. Z.; Jung, J.; Lee, J. H.; Tan, M. H. Nat. Chem. Biol. 2016, 12, 980. [47] Nguyen, D. P.; Miyaoka, Y.; Gilbert, L. A.; Mayerl, S. J.; Lee, B. H.; Weissman, J. S.; Conklin, B. R.; Wells, J. A. Nat. Commun. 2016, 7, 12009. [48] Maji, B.; Moore, C. L.; Zetsche, B.; Volz, S. E.; Zhang, F.; Shoulders, M. D.; Choudhary, A. Nat. Chem. Biol. 2017, 13, 9. [49] Manna, D.; Maji, B.; Gangopadhyay, S. A.; Cox, K. J.; Zhou, Q.; Law, B. K.; Mazitschek, R.; Choudhary, A. Angew. Chem. Int. Ed. 2019, 58, 6285. [50] Senturk, S.; Shirole, N. H.; Nowak, D. G.; Corbo, V.; Pal, D.; Vaughan, A.; Tuveson, D. A.; Trotman, L. C.; Kinney, J. B.; Sordella, R. Nat. Commun. 2017, 8, 14370. [51] Rose, J. C.; Stephany, J. J.; Valente, W. J.; Trevillian, B. M.; Dang, H. V.; Bielas, J. H.; Maly, D. J.; Fowler, D. M. Nat. Methods 2017, 14, 891. [52] Fontana, J.; Dong, C.; Ham, J. Y.; Zalatan, J. G.; Carothers, J. M. Biotechnol. J. 2018, 13, e1800069. [53] Tang, W.; Hu, J. H.; Liu, D. R. Nat. Commun. 2017, 8, 15939. [54] Lin, B.; An, Y.; Meng, L.; Zhang, H.; Song, J.; Zhu, Z.; Liu, W.; Song, Y.; Yang, C. Chem. Commun. 2019, 55, 12223. [55] Kundert, K.; Lucas, J. E.; Watters, K. E.; Fellmann, C.; Ng, A. H.; Heineike, B. M.; Fitzsimmons, C. M.; Oakes, B. L.; Qu, J.; Prasad, N.; Rosenberg, O. S.; Savage, D. F.; El-Samad, H.; Doudna, J. A.; Kortemme, T. Nat. Commun. 2019, 10, 2127. [56] Habibian, M.; McKinlay, C.; Blake, T. R.; Kietrys, A. M.; Waymouth, R. M.; Wender, P. A.; Kool, E. T. Chem. Sci. 2020, 11, 1011. [57] Wang, S.-R.; Wu, L.-Y.; Huang, H.-Y.; Xiong, W.; Liu, J.; Wei, L.; Yin, P.; Tian, T.; Zhou, X. Nat. Commun. 2020, 11, 91. [58] Nihongaki, Y.; Kawano, F.; Nakajima, T.; Sato, M. Nat. Biotechnol. 2015, 33, 755. [59] Hemphill, J.; Borchardt, E. K.; Brown, K.; Asokan, A.; Deiters, A. J. Am. Chem. Soc. 2015, 137, 5642. [60] Zhou, X. X.; Zou, X.; Chung, H. K.; Gao, Y.; Liu, Y.; Qi, L. S.; Lin, M. Z. ACS Chem. Biol. 2018, 13, 443. [61] Pawluk, A.; Davidson, A. R.; Maxwell, K. L. Nat. Rev. Microbiol. 2018, 16, 12. [62] Bubeck, F.; Hoffmann, M. D.; Harteveld, Z.; Aschenbrenner, S.; Bietz, A.; Waldhauer, M. C.; Borner, K.; Fakhiri, J.; Schmelas, C.; Dietz, L.; Grimm, D.; Correia, B. E.; Eils, R.; Niopek, D. Nat. Methods 2018, 15, 924. [63] Jain, P. K.; Ramanan, V.; Schepers, A. G.; Dalvie, N. S.; Panda, A.; Fleming, H. E.; Bhatia, S. N. Angew. Chem. Int. Ed. 2016, 55, 12440. [64] Gao, P.; Pan, W.; Li, N.; Tang, B. Chem. Sci. 2019, 10, 6035. [65] Shao, J.; Wang, M.; Yu, G.; Zhu, S.; Yu, Y.; Heng, B. C.; Wu, J.; Ye, H. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, E6722. [66] Wang, P.; Zhang, L.; Xie, Y.; Wang, N.; Tang, R.; Zheng, W.; Jiang, X. Adv. Sci. 2017, 4, 1700175. [67] Yue, H.; Zhou, X.; Cheng, M.; Xing, D. Nanoscale 2018, 10, 1063. [68] Zhou, W.; Cui, H.; Ying, L.; Yu, X.-F. Angew. Chem. Int. Ed. 2018, 57, 10268. [69] Alsaiari, S. K.; Patil, S.; Alyami, M.; Alamoudi, K. O.; Aleisa, F. A.; Merzaban, J. S.; Li, M.; Khashab, N. M. J. Am. Chem. Soc. 2018, 140, 143. [70] Pan, Y.; Yang, J.; Luan, X.; Liu, X.; Li, X.; Yang, J.; Huang, T.; Sun, L.; Wang, Y.; Lin, Y.; Song, Y. Sci. Adv. 2019, 5, eaav7199. [71] Peng, H.; Le, C.; Wu, J.; Li, X. F.; Zhang, H.; Le, X. C. ACS Nano 2020, 14, 2817. [72] Wang, P.; Zhang, L.; Zheng, W.; Cong, L.; Guo, Z.; Xie, Y.; Wang, L.; Tang, R.; Feng, Q.; Hamada, Y.; Gonda, K.; Hu, Z.; Wu, X.; Jiang, X. Angew. Chem. Int. Ed. 2018, 57, 1491. [73] Chen, X.; Chen, Y.; Xin, H.; Wan, T.; Ping, Y. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 2395. [74] Lyu, Y.; He, S.; Li, J.; Jiang, Y.; Sun, H.; Miao, Y.; Pu, K. Angew. Chem. Int. Ed. 2019, 58, 18197. |