化学学报 ›› 2021, Vol. 79 ›› Issue (4): 388-405.DOI: 10.6023/A20100492 上一篇 下一篇
综述
投稿日期:
2020-10-26
发布日期:
2021-02-22
通讯作者:
薛面起
作者简介:
马慧, 中国科学院理化技术研究所博士研究生. 2019在山东大学获得硕士学位, 2019年至今于中国科学院理化技术研究所攻读高分子化学与物理博士学位, 主要研究方向为水系二次离子电池. |
张桓荣, 中国科学院理化技术研究所硕士研究生. 2019年在河北大学获得学士学位, 2019年至今于中国科学院理化技术研究所攻读高分子化学与物理硕士学位, 主要研究方向为水系二次电池电解液. |
薛面起, 中国科学院理化技术研究所研究员. 2012年于中国人民大学获得博士学位. 2012~2014年就职于北京大学新材料学院, 任特聘研究员. 2014~2018年在中国科学院物理研究所工作. 现任中国科学院理化技术研究所研究员, 博士生导师, 主要研究领域为共轭高分子结晶和储能材料与器件. |
基金资助:
Hui Ma1, Huanrong Zhang1, Mianqi Xue1,*()
Received:
2020-10-26
Published:
2021-02-22
Contact:
Mianqi Xue
About author:
Supported by:
文章分享
水系钠离子电池因其安全性高、成本低、环境友好等突出优势近些年来受到了广泛而深入的研究, 在取得巨大进展的同时也逐步开始了产业化进程. 但是与有机体系二次电池相比, 水系钠离子电池仍然极大地受限于电解液较窄的电化学稳定窗口和电极材料较差的循环稳定性. 迄今为止, 如何解决上述问题依然是这一领域发展的关键. 本综述主要概述了水系钠离子电池电极材料、电解液以及集流体的最新进展, 分析了开发高性能水系钠离子电池的挑战和可能的解决策略, 并进一步讨论了水系钠离子电池的发展前景.
马慧, 张桓荣, 薛面起. 水系钠离子电池的研究进展及实用化挑战[J]. 化学学报, 2021, 79(4): 388-405.
Hui Ma, Huanrong Zhang, Mianqi Xue. Research Progress and Practical Challenges of Aqueous Sodium-Ion Batteries[J]. Acta Chimica Sinica, 2021, 79(4): 388-405.
Type (Based cathode) | Cathode | Anode | Current collector | Electrolyte | AV. Voltage/V | Capacity/ (mAh•g-1) | Retention/% (No. of cycles) | Ref. | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mn-based oxides | γ-MnO2 | Zn | — | 7 M NaOH+ 1 M ZnSO4 | 1.3 | 225 (250 A•cm-2) | 76 (25) | [ | |||||||||
λ-MnO2 | AC | graphite sheet and stainless steel foil | 1 M Na2SO4 | 1.2 | —(3C) | 100 (5000) | [ | ||||||||||
Na0.44MnO2 | NVP/C | — | 1 M Na2SO4 | 0.7 | 117 (1C) | 94.8 (200) | [ | ||||||||||
Na0.44MnO2 | NTP@C | stainless steel mesh | 1 M Na2SO4 | 1.0 | 42 (0.1 A•g-1) | 62 (1000) | [ | ||||||||||
Na0.44MnO2 | NTP | — | 1 M Na2SO4 | 1.0 | 50 (7C) | 50 (1600) | [ | ||||||||||
Na0.44MnO2 | Na2V6O16•nH2O | nickel foam | 1 M Na2SO4 | 0.9 | 62 (0.04 A•g-1) | 40 (30) | [ | ||||||||||
Na0.44MnO2 | NTP/C | nickel foam | 1 M Na2SO4 | 0.8 | 50 (50C) | 100 (75) | [ | ||||||||||
Na0.44MnO2 | PNP@CNT | titanium mesh | 1 M Na2SO4 | 0.8 | 92 (5C) | 89 (200) | [ | ||||||||||
Na0.44MnO2/CNT | Zn | carbon foil | 1 M Na2SO4+0.5 M ZnSO4 | — | — | — | [ | ||||||||||
Na0.44MnO2 | PPy-CNT | titanium mesh | 1 M Na2SO4 | 0.7 | 99.2 (0.1 A•g-1) | 94 (100) | [ | ||||||||||
Na0.44MnO2 | TiP2O7 | — | 1 M Na2SO4 | ~0.8 | 40 (2.5 mA•g-1) | — | [ | ||||||||||
Na0.44MnO2 | FePO4 | titanium mesh | 1 M Na2SO4 | 0.7 | 70 (3C) | 87 (300) | [ | ||||||||||
Na0.44MnO2 | AC | — | 1 M Na2SO4 | 0.8 | 45 (4C) | ~100 (1000) | [ | ||||||||||
Na0.66[Mn0.66Ti0.34]O2 | NTP | titanium mesh | 1 M Na2SO4 | 1.2 | 76 (2C) | 88 (300) | [ | ||||||||||
Na0.66[Mn0.66Ti0.34]O2 | NTP/C | titanium mesh | 5 M NaClO4 | 1.0 | 100 (2C) | 33 (300) | [ | ||||||||||
Na0.66[Mn0.66Ti0.34]O2 | Na1.5Ti1.5Fe0.5(PO4)3/C | titanium mesh | 5 M NaClO4 | 1.0 | 109.5 (2C) | 97.4 (300) | [ | ||||||||||
Na0.66[Mn0.66Ti0.34]O2 | NTP | stainless steel grid | 9.26 m NaCF3SO3 | 1.0 | 31 (0.2C) | 70 (350) | [ | ||||||||||
Na0.27MnO2 | Na0.27MnO2 | carbon paper | 1 M Na2SO4 | 1.1 | 88 (1 A•g-1) | 100 (5000) | [ | ||||||||||
Na0.35MnO2 | PPy@MoO3 | nickel mesh | 0.5 M Na2SO4 | 0.8 | 25 (0.55 A•g-1) | 79 (1000) | [ | ||||||||||
K0.34MnO2 | NTP | stainless steel mesh | 1 M Na2SO4 | 0.8 | 64 (0.2 A•g-1) | 84.1 (200) | [ | ||||||||||
K0.15Na0.26MnO2 | NTP | stainless steel mesh | 1 M Na2SO4 | 1.0 | 65 (0.2 A•g-1) | 92 (200) | [ | ||||||||||
Na0.58MnO2·0.48H2O | NTP | titanium mesh | 1 M Na2SO4 | 1.4 | 39 (10C) | 94 (1000) | [ | ||||||||||
NaMnO2 | NTP | titanium mesh | 2 M NaAc | 1.15 | 37 (5C) | 75 (500) | [ | ||||||||||
K0.27MnO2 | NTP | stainless steel mesh | 1 M Na2SO4 | 0.7 | 80 (0.2 A•g-1) | 83 (100) | [ | ||||||||||
K0.27MnO2 | NTP | stainless steel mesh | 1 M Na2SO4 | 0.8 | 80 (0.2 A•g-1) | 86 (100) | [ | ||||||||||
K0.27MnO2 | AC | — | 1 M Na2SO4 | 0.9 | 60 (0.2 A•g-1) | 75 (200) | [ | ||||||||||
Prussian blue analogues | Na2CuFe(CN)6 | NTP | titanium mesh | 1 M Na2SO4 | 1.4 | 86 (10C) | 88 (1000) | [ | |||||||||
Na2CoFe(CN)6 | NTP | titanium mesh | 1 M Na2SO4 | 0.8 | 100 (5C) | 100 (100) | [ | ||||||||||
Na2Zn3[Fe(CN)6]2 | NTP | titanium mesh | 17 m NaClO4 | 1.6 | 47 (10C) | 100 (1000) | [ | ||||||||||
Na2Mn[Fe(CN)6] | TiS2 | titanium sheet (cathode) and aluminum foil (anode) | 15 M NaClO4 | 1.75 | 38 (5C) | 92 (1000) | [ | ||||||||||
Na2Mn[Fe(CN)6] | KMn[Cr(CN)6] | titanium mesh | 17 m NaClO4 | >2 | 27 (30C) | 78 (100) | [ | ||||||||||
Na2Mn[Fe(CN)6] | NTP/C | aluminum foil | 32 M Kac+ 8 M NaAc | 0.82 | 50 (0.1 A•g-1) | 36 (100) | [ | ||||||||||
Na2Mn[Fe(CN)6] | Zn | titanium mesh | 1 M Na2SO4+1 M ZnSO4+SDS | 1.0 | ≈130 (5C) | 75 (2000) | [ | ||||||||||
Type (Based cathode) | Cathode | Anode | Current collector | Electrolyte | AV. Voltage/V | Capacity/ (mAh•g-1) | Retention/% (No. of cycles) | Ref. | |||||||||
Na2Mn[Fe(CN)6] | Na3Fe2(PO4)3 | — | 17 m NaClO4 | 0.9 | 59 (5C) | 75 (700) | [ | ||||||||||
Na1.88Mn[Fe(CN)6]0.971.35 H2O | NaTiOPO4 | — | 9 m NaOTF+ 22 m TEAOTF | 1.74 | 40 (0.25C) | 90 (200) | [ | ||||||||||
NaFeHCN | AC | carbon paper | 2 M NaNO3+ 60 wt% maltose | 0.8 | 74.4 (2 A•g-1) | 87 (2000) | [ | ||||||||||
Na2NiFe(CN)6 | NTP | titanium mesh | 1 M Na2SO4 | 1.27 | 79 (5C) | 88 (250) | [ | ||||||||||
Na1.45Ni[Fe(CN)6]0.87· 3.02 H2O | NTP@C | stainless steel mesh | 5 M NaClO4 | 1.4 | 61.4 (0.1 A•g-1) | 83 (600) | [ | ||||||||||
Na1.90Cu0.95[Fe(CN)6] 1.9 H2O | Na1.32Fe- [Fe(CN)6]0.87 2.0 H2O | graphite sheet | saturated NaNO3 solution | 0.7 | 50 (5C) | 86 (250) | [ | ||||||||||
K2Zn3(Fe(CN)6)2 9 H2O | NTP | carbon cloth | NaClO4-PVA gel | 1.6 | 0.56 mAh• cm-2 (10 A•cm-2) | 90.2 (300) | [ | ||||||||||
Zn3[Fe(CN)6]2 | NTP/C | titanium mesh | NaClO4-H2O-PEG | 1.6 | 69 (2C) | >91 (100) | [ | ||||||||||
CuHCFe | MnHCMn | carbon cloth | 10 M NaClO4+Mn(ClO4)2 solution | 0.95 | 23 (10C) | 100 (1000) | [ | ||||||||||
K0.8V1.8OxFe(CN)6 | WO3 | titanium mesh | NaClO4-H2O-PEG | — | 67 (1 A•g-1) | 90.3 (2000) | [ | ||||||||||
InFe(CN)6 | NTP-CNT | — | Na2SO4-CMC gel | 1.55 | 38 mAh•cm-2 (0.3 A•cm-2) | 91 (300) | [ | ||||||||||
Polyanionic compounds | NVP | NTP | nickel foam | 1 M Na2SO4 | 1.2 | 58 (10 A•g-1) | 50 (50) | [ | |||||||||
NaFePO4/AlF3 | AC | stainless-steel mesh | 1 M Na2SO4 | — | 95.6 (1 C) | 58.4 (50) | [ | ||||||||||
NaFePO4 | AC | stainless-steel mesh | 1 M Na2SO4 | — | 101.7 (1 C) | 39.6 (50) | [ | ||||||||||
Na2FeP2O7 | NTP | nickel mesh | 2 M Na2SO4 | — | 45 (2 mA•cm-2) | 82 (30) | [ | ||||||||||
Na2FeP2O7 | NTP | nickel mesh | 4 M NaClO4 | — | 45 (2 mA•cm-2) | 93 (30) | [ | ||||||||||
Na4Fe3(PO4)2(P2O7) | NTP | stainless steel mesh | 17 m NaClO4 | 2 | 44 (1C) | 75 (200) | [ | ||||||||||
Na3V2(PO4)2F3-CNT | NTP-CNT | carbon paper (cathode) and titanium foil (anode) | 17 m NaClO4 | 1.7 | 75 (0.5C) | 74 (20) | [ | ||||||||||
Na3(VOPO4)2F | NTP | titanium mesh (cathode) and stainless steel mesh (anode) | 35 m NaFSI | 1.4 | 72 (1C) | 83 (500) | [ | ||||||||||
Na3V2O2x(PO4)2F3-2x- CNT | NTP/C | carbon paper | 10 M NaClO4+ 2 vol% VC | 1.45 | 39 (10C) | 85 (200) | [ | ||||||||||
Na2FePO4F | NTP | titanium mesh | 17 m NaClO4 | 0.7 | 85 (1 mA•cm-2) | 64 (100) | [ | ||||||||||
Na3MnPO4CO3 | NTP | titanium mesh | 5 M NaNO3 | 0.8 | 68 (0.2 C) | 96 (50) | [ | ||||||||||
NaVPO4F | polyimide | stainless steel mesh | 5 M NaNO3 | 0.9 | 40 (0.05 A•g-1) | 75 (20) | [ | ||||||||||
NVP | PPTO | Pb (cathode) titanium mesh (anode) | 5 M NaNO3 | 1.0 | 201 (1C) | 79 (80) | [ | ||||||||||
NVP/C | alloxazine/CMK-3 | stainless steel mesh | NaCF3SO3-PAM gel | 1.03 | 160 (2C) | 90 (100) | [ | ||||||||||
Other | NaNi0.4Co0.6O2 | AC | stainless steel mesh | 0.5 M Na2SO4 | 0.7 | 105 (0.8 A•g-1) | 95 (500) | [ | |||||||||
PPy | alizarin | carbon cloth | NaClO4-PVA gel | 1.0 | 152 (1.0 A•g-1) | — | [ |
Type (Based cathode) | Cathode | Anode | Current collector | Electrolyte | AV. Voltage/V | Capacity/ (mAh•g-1) | Retention/% (No. of cycles) | Ref. | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mn-based oxides | γ-MnO2 | Zn | — | 7 M NaOH+ 1 M ZnSO4 | 1.3 | 225 (250 A•cm-2) | 76 (25) | [ | |||||||||
λ-MnO2 | AC | graphite sheet and stainless steel foil | 1 M Na2SO4 | 1.2 | —(3C) | 100 (5000) | [ | ||||||||||
Na0.44MnO2 | NVP/C | — | 1 M Na2SO4 | 0.7 | 117 (1C) | 94.8 (200) | [ | ||||||||||
Na0.44MnO2 | NTP@C | stainless steel mesh | 1 M Na2SO4 | 1.0 | 42 (0.1 A•g-1) | 62 (1000) | [ | ||||||||||
Na0.44MnO2 | NTP | — | 1 M Na2SO4 | 1.0 | 50 (7C) | 50 (1600) | [ | ||||||||||
Na0.44MnO2 | Na2V6O16•nH2O | nickel foam | 1 M Na2SO4 | 0.9 | 62 (0.04 A•g-1) | 40 (30) | [ | ||||||||||
Na0.44MnO2 | NTP/C | nickel foam | 1 M Na2SO4 | 0.8 | 50 (50C) | 100 (75) | [ | ||||||||||
Na0.44MnO2 | PNP@CNT | titanium mesh | 1 M Na2SO4 | 0.8 | 92 (5C) | 89 (200) | [ | ||||||||||
Na0.44MnO2/CNT | Zn | carbon foil | 1 M Na2SO4+0.5 M ZnSO4 | — | — | — | [ | ||||||||||
Na0.44MnO2 | PPy-CNT | titanium mesh | 1 M Na2SO4 | 0.7 | 99.2 (0.1 A•g-1) | 94 (100) | [ | ||||||||||
Na0.44MnO2 | TiP2O7 | — | 1 M Na2SO4 | ~0.8 | 40 (2.5 mA•g-1) | — | [ | ||||||||||
Na0.44MnO2 | FePO4 | titanium mesh | 1 M Na2SO4 | 0.7 | 70 (3C) | 87 (300) | [ | ||||||||||
Na0.44MnO2 | AC | — | 1 M Na2SO4 | 0.8 | 45 (4C) | ~100 (1000) | [ | ||||||||||
Na0.66[Mn0.66Ti0.34]O2 | NTP | titanium mesh | 1 M Na2SO4 | 1.2 | 76 (2C) | 88 (300) | [ | ||||||||||
Na0.66[Mn0.66Ti0.34]O2 | NTP/C | titanium mesh | 5 M NaClO4 | 1.0 | 100 (2C) | 33 (300) | [ | ||||||||||
Na0.66[Mn0.66Ti0.34]O2 | Na1.5Ti1.5Fe0.5(PO4)3/C | titanium mesh | 5 M NaClO4 | 1.0 | 109.5 (2C) | 97.4 (300) | [ | ||||||||||
Na0.66[Mn0.66Ti0.34]O2 | NTP | stainless steel grid | 9.26 m NaCF3SO3 | 1.0 | 31 (0.2C) | 70 (350) | [ | ||||||||||
Na0.27MnO2 | Na0.27MnO2 | carbon paper | 1 M Na2SO4 | 1.1 | 88 (1 A•g-1) | 100 (5000) | [ | ||||||||||
Na0.35MnO2 | PPy@MoO3 | nickel mesh | 0.5 M Na2SO4 | 0.8 | 25 (0.55 A•g-1) | 79 (1000) | [ | ||||||||||
K0.34MnO2 | NTP | stainless steel mesh | 1 M Na2SO4 | 0.8 | 64 (0.2 A•g-1) | 84.1 (200) | [ | ||||||||||
K0.15Na0.26MnO2 | NTP | stainless steel mesh | 1 M Na2SO4 | 1.0 | 65 (0.2 A•g-1) | 92 (200) | [ | ||||||||||
Na0.58MnO2·0.48H2O | NTP | titanium mesh | 1 M Na2SO4 | 1.4 | 39 (10C) | 94 (1000) | [ | ||||||||||
NaMnO2 | NTP | titanium mesh | 2 M NaAc | 1.15 | 37 (5C) | 75 (500) | [ | ||||||||||
K0.27MnO2 | NTP | stainless steel mesh | 1 M Na2SO4 | 0.7 | 80 (0.2 A•g-1) | 83 (100) | [ | ||||||||||
K0.27MnO2 | NTP | stainless steel mesh | 1 M Na2SO4 | 0.8 | 80 (0.2 A•g-1) | 86 (100) | [ | ||||||||||
K0.27MnO2 | AC | — | 1 M Na2SO4 | 0.9 | 60 (0.2 A•g-1) | 75 (200) | [ | ||||||||||
Prussian blue analogues | Na2CuFe(CN)6 | NTP | titanium mesh | 1 M Na2SO4 | 1.4 | 86 (10C) | 88 (1000) | [ | |||||||||
Na2CoFe(CN)6 | NTP | titanium mesh | 1 M Na2SO4 | 0.8 | 100 (5C) | 100 (100) | [ | ||||||||||
Na2Zn3[Fe(CN)6]2 | NTP | titanium mesh | 17 m NaClO4 | 1.6 | 47 (10C) | 100 (1000) | [ | ||||||||||
Na2Mn[Fe(CN)6] | TiS2 | titanium sheet (cathode) and aluminum foil (anode) | 15 M NaClO4 | 1.75 | 38 (5C) | 92 (1000) | [ | ||||||||||
Na2Mn[Fe(CN)6] | KMn[Cr(CN)6] | titanium mesh | 17 m NaClO4 | >2 | 27 (30C) | 78 (100) | [ | ||||||||||
Na2Mn[Fe(CN)6] | NTP/C | aluminum foil | 32 M Kac+ 8 M NaAc | 0.82 | 50 (0.1 A•g-1) | 36 (100) | [ | ||||||||||
Na2Mn[Fe(CN)6] | Zn | titanium mesh | 1 M Na2SO4+1 M ZnSO4+SDS | 1.0 | ≈130 (5C) | 75 (2000) | [ | ||||||||||
Type (Based cathode) | Cathode | Anode | Current collector | Electrolyte | AV. Voltage/V | Capacity/ (mAh•g-1) | Retention/% (No. of cycles) | Ref. | |||||||||
Na2Mn[Fe(CN)6] | Na3Fe2(PO4)3 | — | 17 m NaClO4 | 0.9 | 59 (5C) | 75 (700) | [ | ||||||||||
Na1.88Mn[Fe(CN)6]0.971.35 H2O | NaTiOPO4 | — | 9 m NaOTF+ 22 m TEAOTF | 1.74 | 40 (0.25C) | 90 (200) | [ | ||||||||||
NaFeHCN | AC | carbon paper | 2 M NaNO3+ 60 wt% maltose | 0.8 | 74.4 (2 A•g-1) | 87 (2000) | [ | ||||||||||
Na2NiFe(CN)6 | NTP | titanium mesh | 1 M Na2SO4 | 1.27 | 79 (5C) | 88 (250) | [ | ||||||||||
Na1.45Ni[Fe(CN)6]0.87· 3.02 H2O | NTP@C | stainless steel mesh | 5 M NaClO4 | 1.4 | 61.4 (0.1 A•g-1) | 83 (600) | [ | ||||||||||
Na1.90Cu0.95[Fe(CN)6] 1.9 H2O | Na1.32Fe- [Fe(CN)6]0.87 2.0 H2O | graphite sheet | saturated NaNO3 solution | 0.7 | 50 (5C) | 86 (250) | [ | ||||||||||
K2Zn3(Fe(CN)6)2 9 H2O | NTP | carbon cloth | NaClO4-PVA gel | 1.6 | 0.56 mAh• cm-2 (10 A•cm-2) | 90.2 (300) | [ | ||||||||||
Zn3[Fe(CN)6]2 | NTP/C | titanium mesh | NaClO4-H2O-PEG | 1.6 | 69 (2C) | >91 (100) | [ | ||||||||||
CuHCFe | MnHCMn | carbon cloth | 10 M NaClO4+Mn(ClO4)2 solution | 0.95 | 23 (10C) | 100 (1000) | [ | ||||||||||
K0.8V1.8OxFe(CN)6 | WO3 | titanium mesh | NaClO4-H2O-PEG | — | 67 (1 A•g-1) | 90.3 (2000) | [ | ||||||||||
InFe(CN)6 | NTP-CNT | — | Na2SO4-CMC gel | 1.55 | 38 mAh•cm-2 (0.3 A•cm-2) | 91 (300) | [ | ||||||||||
Polyanionic compounds | NVP | NTP | nickel foam | 1 M Na2SO4 | 1.2 | 58 (10 A•g-1) | 50 (50) | [ | |||||||||
NaFePO4/AlF3 | AC | stainless-steel mesh | 1 M Na2SO4 | — | 95.6 (1 C) | 58.4 (50) | [ | ||||||||||
NaFePO4 | AC | stainless-steel mesh | 1 M Na2SO4 | — | 101.7 (1 C) | 39.6 (50) | [ | ||||||||||
Na2FeP2O7 | NTP | nickel mesh | 2 M Na2SO4 | — | 45 (2 mA•cm-2) | 82 (30) | [ | ||||||||||
Na2FeP2O7 | NTP | nickel mesh | 4 M NaClO4 | — | 45 (2 mA•cm-2) | 93 (30) | [ | ||||||||||
Na4Fe3(PO4)2(P2O7) | NTP | stainless steel mesh | 17 m NaClO4 | 2 | 44 (1C) | 75 (200) | [ | ||||||||||
Na3V2(PO4)2F3-CNT | NTP-CNT | carbon paper (cathode) and titanium foil (anode) | 17 m NaClO4 | 1.7 | 75 (0.5C) | 74 (20) | [ | ||||||||||
Na3(VOPO4)2F | NTP | titanium mesh (cathode) and stainless steel mesh (anode) | 35 m NaFSI | 1.4 | 72 (1C) | 83 (500) | [ | ||||||||||
Na3V2O2x(PO4)2F3-2x- CNT | NTP/C | carbon paper | 10 M NaClO4+ 2 vol% VC | 1.45 | 39 (10C) | 85 (200) | [ | ||||||||||
Na2FePO4F | NTP | titanium mesh | 17 m NaClO4 | 0.7 | 85 (1 mA•cm-2) | 64 (100) | [ | ||||||||||
Na3MnPO4CO3 | NTP | titanium mesh | 5 M NaNO3 | 0.8 | 68 (0.2 C) | 96 (50) | [ | ||||||||||
NaVPO4F | polyimide | stainless steel mesh | 5 M NaNO3 | 0.9 | 40 (0.05 A•g-1) | 75 (20) | [ | ||||||||||
NVP | PPTO | Pb (cathode) titanium mesh (anode) | 5 M NaNO3 | 1.0 | 201 (1C) | 79 (80) | [ | ||||||||||
NVP/C | alloxazine/CMK-3 | stainless steel mesh | NaCF3SO3-PAM gel | 1.03 | 160 (2C) | 90 (100) | [ | ||||||||||
Other | NaNi0.4Co0.6O2 | AC | stainless steel mesh | 0.5 M Na2SO4 | 0.7 | 105 (0.8 A•g-1) | 95 (500) | [ | |||||||||
PPy | alizarin | carbon cloth | NaClO4-PVA gel | 1.0 | 152 (1.0 A•g-1) | — | [ |
[1] |
Larcher, D.; Tarascon, J.M. Nature Chem. 2014, 7,19.
|
[2] |
Song, X.; Li, J.; Li, Z.; Li, X.; Ding, Y.; Xiao, Q.; Lei, G. Acta Chim. Sinica 2019, 77,625. (in Chinese)
|
( 宋学霞, 李继成, 李朝晖, 李喜飞, 丁燕怀, 肖启振, 雷钢铁, 化学学报, 2019, 77,625.)
|
|
[3] |
Wang, X.; Zhang, Y.; Ma, L.; Wei, L. Acta Chim. Sinica 2019, 77,24. (in Chinese)
|
( 王晓钰, 张渝, 马磊, 魏良明, 化学学报, 2019, 77,24.)
|
|
[4] |
Kang, S.; Fan, S.; Liu, Y.; Wei, Y.; Li, Y.; Fang, J.; Meng, C. Acta Chim. Sinica 2019, 77,647. (in Chinese)
|
( 康树森, 范少聪, 刘岩, 魏彦存, 李营, 房金刚, 孟垂舟, 化学学报, 2019, 77,647.)
|
|
[5] |
Wang, Y.; Yi, J.; Xia, Y. Adv. Energy Mater. 2012, 2,830.
|
[6] |
Bin, D.; Wang, F.; Tamirat, A.G.; Suo, L.; Wang, Y.; Wang, C.; Xia, Y. Adv. Energy Mater. 2018, 8,1703008.
|
[7] |
Liu, M.; Ao, H.; Jin, Y.; Hou, Z.; Zhang, X.; Zhu, Y.; Qian, Y. Mater. Today Energy 2020, 17,100432.
|
[8] |
Peng, Z.; Ding, H.; Chen, R.; Gao, C.; Wang, C. Acta Chim. Sinica 2019, 77,681. (in Chinese)
|
( 彭正康, 丁慧敏, 陈如凡, 高超, 汪成, 化学学报, 2019, 77,681.)
|
|
[9] |
Wang, X.; Chen, D.; Yang, Z.; Zhang, X.; Wang, C.; Chen, J.; Zhang, X.; Xue, M. Adv. Mater. 2016, 28,8645.
|
[10] |
Kim, H.; Hong, J.; Park, K.Y.; Kim, H.; Kim, S.W.; Kang, K. Chem. Rev. 2014, 114,11788.
|
[11] |
Deng, W.; Wang, X.; Liu, C.; Li, C.; Chen, J.; Zhu, N.; Li, R.; Xue, M. Energy Storage Mater. 2019, 20,373.
|
[12] |
Li, W.; Dahn, J.R.; Wainwright, D.S. Science 1994, 264,1115.
|
[13] |
Liu, C.; Wang, X.; Deng, W.; Li, C.; Chen, J.; Xue, M.; Li, R.; Pan, F. Angew. Chem. Int. Ed. 2018, 57,7046.
|
[14] |
Zhang, L.; Wang, W.; Zhang, H.; Han, S.; Wang, L. Acta Chim. Sinica 2021, 79,158. (in Chinese)
|
( 张璐, 王文凤, 张洪明, 韩树民, 王利民, 化学学报, 2021, 79,158.)
|
|
[15] |
Li, P.; Liu, J.; Sun, W.; Tao, Z.; Chen, J. Acta Chim. Sinica 2018, 76,286. (in Chinese)
|
( 李攀, 刘建, 孙惟袆, 陶占良, 陈军, 化学学报, 2018, 76,286.)
|
|
[16] |
Yang, H.; Qian, J. J. Inorg. Mater. 2013, 28,1165. (in Chinese)
|
( 杨汉西, 钱江锋, 无机材料学报, 2013, 28,1165.)
|
|
[17] |
Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Chem. Rev. 2014, 114,11636.
|
[18] |
Liu, Z.; Huang, Y.; Huang, Y.; Yang, Q.; Li, X.; Huang, Z.; Zhi, C. Chem. Soc. Rev. 2020, 49,180.
|
[19] |
Liu, C.; Wang, X.; Deng, W.; Li, C.; Chen, J.; Xue, M.; Li, R.; Pan, F. Angew. Chem. Int. Ed. 2018, 57,7046.
|
[20] |
Wu, X.Y.; Sun, M.Y.; Shen, Y.F.; Qian, J.F.; Cao, Y.L.; Ai, X.P.; Yang, H.X. ChemSusChem 2014, 7,407.
|
[21] |
Zang, X.; Wang, X.; Liu, H.; Ma, X.; Wang, W.; Ji, J.; Chen, J.; Li, R.; Xue, M. ACS Appl. Mater. Interfaces 2020, 12,9347.
|
[22] |
Minakshi, M.; Ralph, D. ECS Trans. 2013, 45,95.
|
[23] |
Wang, L.; Ebina, Y.; Takada, K.; Sasaki, T. Chem. Commun. 2004,1074.
|
[24] |
Devaraj, S.; Munichandraiah, N. J. Phys. Chem. C 2008, 112,4406.
|
[25] |
Ragupathy P.; Vasan H. N.; Munichandraiah N. J. Electrochem. Soc. 2008, 155,A34.
|
[26] |
Tarascon, J.; Guyomard, D.; Wilkens, B.; McKinnon, W.R.; Barboux, P. Solid State Ionics 1992, 57,113.
|
[27] |
Minakshi, M. Mater. Sci. Eng., B 2012, 177,1788.
|
[28] |
Whitacre, J.F.; Wiley, T.; Shanbhag, S.; Wenzhuo, Y.; Mohamed, A.; Chun, S.E.; Weber, E.; Blackwood, D.; Lynch-Bell, E.; Gulakowski, J.; Smith, C.; Humphreys, D. J. Power Sources 2012, 213,255.
|
[29] |
Ju, X.; Huang, H.; Zheng, H.; Deng, P.; Li, S.; Qu, B.; Wang, T. J. Power Sources 2018, 395,395.
|
[30] |
Ke, L.; Dong, J.; Lin, B.; Yu, T.; Wang, H.; Zhang, S.; Deng, C. Nanoscale 2017, 9,4183.
|
[31] |
Guo, Z.; Zhao, Y.; Ding, Y.; Dong, X.; Chen, L.; Cao, J.; Wang, C.; Xia, Y.; Peng, H.; Wang, Y. Chem 2017, 3,348.
|
[32] |
Li, Z.; Young, D.; Xiang, K.; Carter, W.C.; Chiang, Y.M. Adv. Energy Mater. 2013, 3,290.
|
[33] |
Deng, C.; Zhang, S.; Dong, Z.; Shang, Y. Nano Energy 2014, 4,49.
|
[34] |
Zhao, B.; Wang, Q.; Zhang, S.; Deng, C. J. Mater. Chem. A 2015, 3,12089.
|
[35] |
Gu, T.; Zhou, M.; Liu, M.; Wang, K.; Cheng, S.; Jiang, K. RSC Adv. 2016, 6,53319.
|
[36] |
Yin, F.; Liu, Z.; Yang, S.; Shan, Z.; Zhao, Y.; Feng, Y.; Zhang, C.; Bakenov, Z. Nanoscale Res. Lett. 2017, 12,569.
|
[37] |
Lim, H.; Jung, J.H.; Park, Y.M.; Lee, H.N.; Kim, H.J. Appl. Surf. Sci. 2018, 446,131.
|
[38] |
Yee, G.; Shanbhag, S.; Wu, W.; Carlisle, K.; Chang, J.; Whitacre, J.F. Electrochem. Commun. 2018, 86,104.
|
[39] |
Wang, Y.; Feng, Z.; Laul, D.; Zhu, W.; Provencher, M.; Trudeau, M.L.; Guerfi, A.; Zaghib, K. J. Power Sources 2018, 374,211.
|
[40] |
Chua, R.; Cai, Y.; Kou, Z.K.; Satish, R.; Ren, H.; Chan, J.J.; Zhang, L.; Morris, S.A.; Bai, J.; Srinivasan, M. Chem. Eng. J. 2019, 370,742.
|
[41] |
Whitacre, J.F.; Tevar, A.; Sharma, S. Electrochem. Commun. 2010, 12,463.
|
[42] |
Wang, Y.; Liu, J.; Lee, B.; Qiao, R.; Yang, Z.; Xu, S.; Yu, X.; Gu, L.; Hu, Y.S.; Yang, W.; Kang, K.; Li, H.; Yang, X.Q.; Chen, L.; Huang, X. Nat. Commun. 2015, 6,6401.
|
[43] |
Wang, Y.; Mu, L.; Liu, J.; Yang, Z.; Yu, X.; Gu, L.; Hu, Y.S.; Li, H.; Yang, X.Q.; Chen, L.; Huang, X. Adv. Energy Mater. 2015, 5,1501005.
|
[44] |
Qiu, Y.; Yu, Y.; Xu, J.; Liu, Y.; Ou, M.; Sun, S.; Wei, P.; Deng, Z.; Xu, Y.; Fang, C.; Li, Q.; Han, J.; Huang, Y. J. Mater. Chem. A 2019, 7,24953.
|
[45] |
Suo, L.; Borodin, O.; Wang, Y.; Rong, X.; Sun, W.; Fan, X.; Xu, S.; Schroeder, M.A.; Cresce, A.V.; Wang, F.; Yang, C.; Hu, Y.S.; Xu, K.; Wang, C. Adv. Energy Mater. 2017, 7,1701189.
|
[46] |
Zhang, F.; Li, W.; Xiang, X.; Sun, M. J. Electroanal. Chem. 2017, 802,22.
|
[47] |
Zhang, Y.; Ye, K.; Cheng, K.; Wang, G.; Cao, D. Electrochim. Acta 2014, 148,195.
|
[48] |
Karikalan, N.; Karuppiah, C.; Chen, S.-M.; Velmurugan, M.; Gnanaprakasam, P. Chem. Eur. J. 2017, 23,2379.
|
[49] |
Zhang, Y.; An, Y.; Jiang, J.; Dong, S.; Wu, L.; Fu, R.; Dou, H.; Zhang, X. Energy Technol. 2018, 6,2146.
|
[50] |
Shan, X.; Guo, F.; Charles, D.S.; Lebens-Higgins, Z.; Abdel Razek, S.; Wu, J.; Xu, W.; Yang, W.; Page, K.L.; Neuefeind, J.C.; Feygenson, M.; Piper, L.F. J.; Teng, X. Nat. Commun. 2019, 10,4975.
|
[51] |
Liu, Y.; Zhang, B.H.; Xiao, S.Y.; Liu, L.L.; Wen, Z.B.; Wu, Y.P. Electrochim. Acta 2014, 116,512.
|
[52] |
Liu, Y.; Qiao, Y.; Zhang, W.; Wang, H.; Chen, K.; Zhu, H.; Li, Z.; Huang, Y. J. Mater. Chem. A 2015, 3,7780.
|
[53] |
Zhang, X.; Hou, Z.; Li, X.; Liang, J.; Zhu, Y.; Qian, Y. J. Mater. Chem. A 2016, 4,856.
|
[54] |
Qu, Q.T.; Shi, Y.; Tian, S.; Chen, Y.H.; Wu, Y.P.; Holze, R. J. Power Sources 2009, 194,1222.
|
[55] |
Hou, Z.; Li, X.; Liang, J.; Zhu, Y.; Qian, Y. J. Mater. Chem. A 2015, 3,1400.
|
[56] |
Liu, Y.; Qiao, Y.; Lou, X.; Zhang, X.; Zhang, W.; Huang, Y. ACS Appl. Mater. Interfaces 2016, 8,14564.
|
[57] |
Liu, Y.; Qiao, Y.; Zhang, W.; Xu, H.; Li, Z.; Shen, Y.; Yuan, L.; Hu, X.; Dai, X.; Huang, Y. Nano Energy 2014, 5,97.
|
[58] |
Liu, Y.; Qiao, Y.; Zhang, W.; Huang, Y. 224th Electrochemical Society Interface Meeting, San Francisco, The Electrochemical Society, 2013, Abstract #382.
|
[59] |
He, B.; Man, P.; Zhang, Q.; Wang, C.; Zhou, Z.; Li, C.; Wei, L.; Yao, Y. Small 2019, 15,1905115.
|
[60] |
Wu, X.; Sun, M.; Guo, S.; Qian, J.; Liu, Y.; Cao, Y.; Ai, X.; Yang, H. ChemNanoMat 2015, 1,188.
|
[61] |
Shao, T.; Li, C.; Liu, C.; Deng, W.; Wang, W.; Xue, M.; Li, R. J. Mater. Chem. A 2019, 7,1749.
|
[62] |
Shao, M.; Wang, B.; Liu, M.; Wu, C.; Ke, F.S.; Ai, X.; Yang, H.; Qian, J. ACS Appl. Energy Mater. 2019, 2,5809.
|
[63] |
Nakamoto, K.; Sakamoto, R.; Ito, M.; Kitajou, A.; Okada, S. Electrochemistry 2017, 85,179.
|
[64] |
Hou, Z.; Zhang, X.; Ao, H.; Liu, M.; Zhu, Y.; Qian, Y. Mater. Today Energy 2019, 14,100337.
|
[65] |
Nakamoto, K.; Sakamoto, R.; Sawada, Y.; Ito, M.; Okada, S. Small Methods 2018,1800220.
|
[66] |
Han, J.; Zhang, H.; Varzi, A.; Passerini, S. ChemSusChem 2018, 11,3704.
|
[67] |
Hou, Z.; Zhang, X.; Li, X.; Zhu, Y.; Liang, J.; Qian, Y. J. Mater. Chem. A 2017, 5,730.
|
[68] |
Qiu, S.; Wu, X.; Wang, M.; Lucero, M.; Wang, Y.; Wang, J.; Yang, Z.; Xu, W.; Wang, Q.; Gu, M.; Wen, J.; Huang, Y.; Xu, Z.J.; Feng, Z. Nano Energy 2019, 64,103941.
|
[69] |
Jiang, L.; Liu, L.; Yue, J.; Zhang, Q.; Zhou, A.; Borodin, O.; Suo, L.; Li, H.; Chen, L.; Xu, K.; Hu, Y.S. Adv. Mater. 2019, 32,1904427.
|
[70] |
Bi, H.; Wang, X.; Liu, H.; He, Y.; Wang, W.; Deng, W.; Ma, X.; Wang, Y.; Rao, W.; Chai, Y.; Ma, H.; Li, R.; Chen, J.; Wang, Y.; Xue, M. Adv. Mater. 2020, 32,2000074.
|
[71] |
Fernández-Ropero, A.J.; Piernas-Muñoz, M.J.; Castillo-Martínez, E.; Rojo, T.; Casas-Cabanas, M. Electrochim. Acta 2016, 210,352.
|
[72] |
Wu, X.; Cao, Y.; Ai, X.; Qian, J.; Yang, H. Electrochem. Commun. 2013, 31,145.
|
[73] |
Shen, L.; Jiang, Y.; Liu, Y.; Ma, J.; Sun, T.; Zhu, N. Chem. Eng. J. 2020, 388,124228.
|
[74] |
Wang, B.; Wang, X.; Liang, C.; Yan, M.; Jiang, Y. ChemElectroChem 2019, 6,4848.
|
[75] |
Li, W.; Zhang, F.; Xiang, X.; Zhang, X. ChemElectroChem 2018, 5,350.
|
[76] |
Baster, D.; Oveisi, E.; Mettraux, P.; Agrawal, S.; Girault, H.H. Chem. Commun. 2019, 55,14633.
|
[77] |
Paulitsch, B.; Yun, J.; Bandarenka, A.S. ACS Appl. Mater. Interfaces 2017, 9,8107.
|
[78] |
Niu, L.; Chen, L.; Zhang, J.; Jiang, P.; Liu, Z. J. Power Sources 2018, 380,135.
|
[79] |
Wessells, C.D.; Peddada, S.V.; Huggins, R.A.; Cui, Y. Nano Lett. 2011, 11,5421.
|
[80] |
Wessells, C.D.; McDowell, M.T.; Peddada, S.V.; Pasta, M.; Huggins, R.A.; Cui, Y. ACS Nano 2012, 6,1688.
|
[81] |
Pasta, M.; Wessells, C.D.; Liu, N.; Nelson, J.; McDowell, M.T.; Huggins, R.A.; Toney, M.F.; Cui, Y. Nat. Commun. 2014, 5,3007.
|
[82] |
Jiang, P.; Lei, Z.; Chen, L.; Shao, X.; Liang, X.; Zhang, J.; Wang, Y.; Zhang, J.; Liu, Z.; Feng, J. ACS Appl. Mater. Interfaces 2019, 11,28762.
|
[83] |
Zhang, Q.; Man, P.; He, B.; Li, C.; Li, Q.; Pan, Z.; Wang, Z.; Yang, J.; Wang, Z.; Zhou, Z.; Lu, X.; Niu, Z.; Yao, Y.; Wei, L. Nano Energy 2020, 67,104212.
|
[84] |
Masquelier, C.; Croguennec, L. Chem. Rev. 2013, 113,6552.
|
[85] |
Yang, J.; Li, D.; Wang, X.; Zhang, X.; Xu, J.; Chen, J. Energy Storage Mater. 2020, 24,694.
|
[86] |
Zhang, Q.; Liao, C.; Zhai, T.; Li, H. Electrochim. Acta 2016, 196,470.
|
[87] |
Song, W.; Ji, X.; Zhu, Y.; Zhu, H.; Li, F.; Chen, J.; Lu, F.; Yao, Y.; Banks, C.E. ChemElectroChem 2014, 1,821.
|
[88] |
Zhang, L.; Huang, T.; Yu, A. J. Alloys Compd. 2015, 646,522.
|
[89] |
Lei, P.; Wang, Y.; Zhang, F.; Wan, X.; Xiang, X. ChemElectroChem 2018, 5,2482.
|
[90] |
Fernández-Ropero, A.J.; Saurel, D.; Acebedo, B.; Rojo, T.; Casas-Cabanas, M. J. Power Sources 2015, 291,40.
|
[91] |
Jeong, S.; Kim, B.H.; Park, Y.D.; Lee, C.Y.; Mun, J.; Tron, A. J. Alloys Compd. 2019, 784,720.
|
[92] |
Vujković, M.; Mentus, S. J. Power Sources 2014, 247,184.
|
[93] |
Jung, Y.H.; Lim, C.H.; Kim, J.H.; Kim, D.K. RSC Adv. 2014, 4,9799.
|
[94] |
Nakamoto, K.; Kano, Y.; Kitajou, A.; Okada, S. J. Power Sources 2016, 327,327.
|
[95] |
Lee, M.H.; Kim, S.J.; Chang, D.; Kim, J.; Moon, S.; Oh, K.; Park, K.Y.; Seong, W.M.; Park, H.; Kwon, G.; Lee, B.; Kang, K. Mater. Today 2019, 29,26.
|
[96] |
Fernández-Ropero, A.J.; Zarrabeitia, M.; Reynaud, M.; Rojo, T.; Casas-Cabanas, M. J. Phys. Chem. C 2017, 122,133.
|
[97] |
Liu, S.; Wang, L.; Liu, J.; Zhou, M.; Nian, Q.; Feng, Y.; Tao, Z.; Shao, L. J. Mater. Chem. A 2019, 7,248.
|
[98] |
Reber, D.; Kühnel, R.S.; Battaglia, C. ACS Mater. Lett. 2019, 1,44.
|
[99] |
Kumar, P.R.; Jung, Y.H.; Lim, C.H.; Kim, D.K. J. Mater. Chem. A 2015, 3,6271.
|
[100] |
Kumar, P.R.; Jung, Y.H.; Moorthy, B.; Kim, D.K. J. Electrochem. Soc. 2016, 163,A1484.
|
[101] |
Sharma, L.; Nakamoto, K.; Sakamoto, R.; Okada, S.; Barpanda, P. ChemElectroChem 2019, 6,444.
|
[102] |
Jung, Y.H.; Hong, S.T.; Kim, D.K. J. Electrochem. Soc. 2013, 160,A897.
|
[103] |
Nwanya, A.C.; Ndipingwi, M.M.; Ikpo, C.O.; Ezema, F.I.; Iwuoha, E.I.; Maaza, M. J. Electroanal. Chem. 2020, 858,113809.
|
[104] |
Qu, Q.T.; Liu, L.L.; Wu, Y.P.; Holze, R. Electrochim. Acta 2013, 96,8.
|
[105] |
Bae, K.L.; Kim, K. Int. J. Energy Res. 2017, 41,1335.
|
[106] |
Long, H.; Zeng, W.; Wang, H.; Qian, M.; Liang, Y.; Wang, Z. Adv. Sci. 2018, 5,1700634.
|
[107] |
Koshika, K.; Sano, N.; Oyaizu, K.; Nishide, H. Chem. Commun. 2009,836.
|
[108] |
Zhang, L.; Wang, X.; Deng, W.; Zang, X.; Liu, C.; Li, C.; Chen, J.; Xue, M.; Li, R.; Pan, F. Nanoscale 2018, 10,958.
|
[109] |
Shiprath, K.; Manjunatha, H.; Babu Naidu, K.C.; Khan, A.; Asiri, A.M.; Boddula, R. Mater. Chem. Phys. 2020, 248,122952.
|
[110] |
Li, X.; Zhu, X.; Liang, J.; Hou, Z.; Wang, Y.; Lin, N.; Zhu, Y.; Qian, Y. J. Electrochem. Soc. 2014, 161,A1181.
|
[111] |
Park, S.I.; Gocheva, I.; Okada, S.; Yamaki, J.I. J. Electrochem. Soc. 2011, 158,A1067.
|
[112] |
Lei, P.; Liu, K.; Wan, X.; Luo, D.; Xiang, X. Chem. Commun. 2019, 55,509.
|
[113] |
Pang, G.; Yuan, C.; Nie, P.; Ding, B.; Zhu, J.; Zhang, X. Nanoscale 2014, 6,6328.
|
[114] |
Wu, W.; Yan, J.; Wise, A.; Rutt, A.; Whitacre, J.F. 2014, 161,A561.
|
[115] |
Mohamed, A.I.; Sansone, N.J.; Kuei, B.; Washburn, N.R.; Whitacre, J.F. J. Electrochem. Soc. 2015, 162,A2201.
|
[116] |
Liu, Z.; An, Y.; Pang, G.; Dong, S.; Xu, C.; Mi, C.; Zhang, X. Chem. Eng. J. 2018, 353,814.
|
[117] |
Qin, H.; Song, Z.P.; Zhan, H.; Zhou, Y.H. J. Power Sources 2014, 249,367.
|
[118] |
Zhao, Q.; Lu, Y.; Chen, J. Adv. Energy Mater. 2017, 7,1601792.
|
[119] |
Liang, Y.; Jing, Y.; Gheytani, S.; Lee, K.Y.; Liu, P.; Facchetti, A.; Yao, Y. Nature Mater. 2017, 16,841.
|
[120] |
Zhong, L.; Lu, Y.; Li, H.; Tao, Z.; Chen, J. ACS Sustainable Chem. Eng. 2018, 6,7761.
|
[121] |
Demir Cakan, R.; Palacin, M.R.; Croguennec, L. J. Mater. Chem. A 2019, 7,20519.
|
[122] |
Suo, L.; Borodin, O.; Gao, T.; Olguin, M.; Ho, J.; Fan, X.; Luo, C.; Wang, C.; Xu, K. Science 2015, 350,938.
|
[123] |
Wu, W.; Shabhag, S.; Chang, J.; Rutt, A.; Whitacre, J.F. J. Electrochem. Soc. 2015, 162,A803.
|
[124] |
Eftekhari, A. Adv. Energy Mater. 2018, 8,1801156.
|
[125] |
Che, H.; Chen, S.; Xie, Y.; Wang, H.; Amine, K.; Liao, X.Z.; Ma, Z.F. Energy Environ. Sci. 2017, 10,1075.
|
[126] |
Li, M.; Wang, C.; Chen, Z.; Xu, K.; Lu, J. Chem. Rev. 2020, 120,6783.
|
[127] |
Kühnel, R.S.; Reber, D.; Battaglia, C. ACS Energy Lett. 2020, 5,346.
|
[128] |
Yamada, Y.; Usui, K.; Sodeyama, K.; Ko, S.; Tateyama, Y.; Yamada, A. Nat. Energy 2016, 1,16129.
|
[129] |
Yamada, Y.; Yamada, A. Chem. Lett. 2017, 46,1056.
|
[130] |
Zheng, Q.; Miura, S.; Miyazaki, K.; Ko, S.; Watanabe, E.; Okoshi, M.; Chou, C.P.; Nishimura, Y.; Nakai, H.; Kamiya, T.; Honda, T.; Akikusa, J.; Yamada, Y.; Yamada, A. Angew. Chem. Int. Ed. 2019, 58,14202.
|
[131] |
Wojciechowski, J.; Kolanowski, Ł.; Bund, A.; Lota, G. J. Power Sources 2017, 368,18.
|
[132] |
Chen, Q.; Nuli, Y.; Yang, J.; Kailibinuer, K.; Wang, J. Acta Phys. -Chim. Sin. 2012, 28,2625. (in Chinese)
|
( 陈强, 努丽燕娜, 杨军, 凯丽比努尔·克日木, 王久林, 物理化学学报, 2012, 28,2625.)
|
|
[133] |
Gheytani, S.; Liang, Y.; Jing, Y.; Xu, J.Q.; Yao, Y. J. Mater. Chem. A 2016, 4,395.
|
[134] |
Kühnel, R.S.; Reber, D.; Remhof, A.; Figi, R.; Bleiner, D.; Battaglia, C. Chem. Commun. 2016, 52,10435.
|
[135] |
Wang, M.; Tang, M.; Chen, S.; Ci, H.; Wang, K.; Shi, L.; Lin, L.; Ren, H.; Shan, J.; Gao, P.; Liu, Z.; Peng, H. Adv. Mater. 2017, 29,1703882.
|
[136] |
Wen, Y.H.; Shao, L.; Zhao, P.C.; Wang, B.Y.; Cao, G.P.; Yang, Y.S. J. Mater. Chem. A 2017, 5,15752.
|
[137] |
Chen, Y.; Fu, K.; Zhu, S.; Luo, W.; Wang, Y.; Li, Y.; Hitz, E.; Yao, Y.; Dai, J.; Wan, J.; Danner, V.A.; Li, T.; Hu, L. Nano Lett. 2016, 16,3616.
|
[138] |
Zhao, Y.; Hong, M.; Bonnet Mercier, N.; Yu, G.; Choi, H.C.; Byon, H.R. Nano Lett. 2014, 14,1085.
|
[139] |
Liu, T.; Cheng, X.; Yu, H.; Zhu, H.; Peng, N.; Zheng, R.; Zhang, J.; Shui, M.; Cui, Y.; Shu, J. Energy Storage Mater. 2019, 18,68.
|
[140] |
Huang, J.; Guo, Z.; Ma, Y.; Bin, D.; Wang, Y.; Xia, Y. Small Methods 2019, 3,1800272.
|
[141] |
Luo, J.Y.; Cui, W.J.; He, P.; Xia, Y.Y. Nature Chem. 2010, 2,760.
|
[142] |
Li, W.; Dahn, J.R.; Wainwright, D.S. Science 1994, 264,1115.
|
[143] |
Ren, X.; Li, D.; Zhao, Z.; Chen, G.; Zhao, K.; Kong, X.; Li, T. Acta Chim. Sinica 2020, 78,1268. (in Chinese)
|
( 任旭强, 李东林, 赵珍珍, 陈光琦, 赵坤, 孔祥泽, 李童心, 化学学报, 2020, 78,1268.)
|
|
[144] |
Gao, H.; Goodenough, J.B. Angew. Chem. Int. Ed. 2016, 55,12768.
|
[145] |
Zhang, F.; Li, W.; Xiang, X.; Sun, M. Chem. Eur. J. 2017, 23,12944.
|
[146] |
He, J.; Zhang, H.; Liu, X.; Lu, X. Acta Chim. Sinica 2020, 78,1069. (in Chinese)
|
( 何锦俊, 张昊喆, 刘晓庆, 卢锡洪, 化学学报, 2020, 78,1069.)
|
|
[147] |
Li, Z.; Wang, Z.; Ban, L.; Wang, J.; Lu, S. Acta Chim. Sinica 2019, 77,1115. (in Chinese)
|
( 李钊, 王忠, 班丽卿, 王建涛, 卢世刚, 化学学报, 2019, 77,1115.)
|
|
[148] |
Shan, X.; Charles, D.S.; Lei, Y.; Qiao, R.; Wang, G.; Yang, W.; Feygenson, M.; Su, D.; Teng, X. Nat. Commun. 2016, 7,13370.
|
[149] |
Chen, L.; Li, W.; Guo, Z.; Wang, Y.; Wang, C.; Che, Y.; Xia, Y. J. Electrochem. Soc. 2015, 162,A1972.
|
[150] |
Mohamed, A.I.; Whitacre, J.F. Electrochim. Acta 2017, 235,730.
|
[151] |
Liu, S.; Shao, L.Y.; Zhang, X.J.; Tao, Z.L.; Chen, J. Acta Phys. -Chim. Sin. 2018, 34,581. (in Chinese)
|
( 刘双, 邵涟漪, 张雪静, 陶占良, 陈军, 物理化学学报, 2018, 34,581.)
|
|
[152] |
Suo, L.; Oh, D.; Lin, Y.; Zhuo, Z.; Borodin, O.; Gao, T.; Wang, F.; Kushima, A.; Wang, Z.; Kim, H.C.; Qi, Y.; Yang, W.; Pan, F.; Li, J.; Xu, K.; Wang, C. J. Am. Chem. Soc. 2017, 139,18670.
|
[153] |
Stojković, I.B.; Cvjetićanin, N.D.; Mentus, S.V. Electrochem. Commun. 2010, 12,371.
|
[154] |
Jin, S.; Jiang, Y.; Ji, H.; Yu, Y. Adv. Mater. 2018, 30,1802014.
|
[155] |
Yue, Y.; Liang, H. Small Methods 2018, 2,1800056.
|
[156] |
Wang, S.; Fan, X.; Cui, Y.; Gou, L.; Wang, X.; Li, D. Acta Chim. Sinica 2019, 77,551. (in Chinese)
|
( 王珊, 樊小勇, 崔宇, 苟蕾, 王新刚, 李东林, 化学学报, 2019, 77,551.)
|
|
[157] |
Luo, W.; Hayden, J.; Jang, S.-H.; Wang, Y.; Zhang, Y.; Kuang, Y.; Wang, Y.; Zhou, Y.; Rubloff, G.W.; Lin, C.F.; Hu, L. Adv. Energy Mater. 2018, 8,1702615.
|
[158] |
Li, C.; Wang, X.; Deng, W.; Liu, C.; Chen, J.; Li, R.; Xue, M. ChemElectroChem 2018, 5,3887.
|
[159] |
Zheng, J.; Tan, G.; Shan, P.; Liu, T.; Hu, J.; Feng, Y.; Yang, L.; Zhang, M.; Chen, Z.; Lin, Y.; Lu, J.; Neuefeind, J.C.; Ren, Y.; Amine, K.; Wang, L.W.; Xu, K.; Pan, F. Chem 2018, 4,2872.
|
[160] |
Wang, X.; Ding, J.; Chen, J.; Xue, M. J. Power Sources 2019, 441,227190.
|
[161] |
Wang, F.; Borodin, O.; Ding, M.S.; Gobet, M.; Vatamanu, J.; Fan, X.; Gao, T.; Eidson, N.; Liang, Y.; Sun, W.; Greenbaum, S.; Xu, K.; Wang, C. Joule 2018, 2,927.
|
[162] |
McEldrew, M.; Goodwin, Z.A. H.; Kornyshev, A.A.; Bazant, M.Z. J. Phys. Chem. Lett. 2018, 9,5840.
|
[1] | 薛晓兰, 张洋, 石美瑜, 李天琳, 黄天龙, 戚继球, 委福祥, 隋艳伟, 金钟. 有机电极材料在非水系金属镁二次电池中的研究进展[J]. 化学学报, 2022, 80(12): 1618-1628. |
[2] | 李宛飞, 李鑫, 范海燕, 肖建华, 刘倩倩, 程淼, 胡敬, 魏涛, 吴正颖, 凌云, 刘波, 张跃钢. 非亲核镁硫电池电解液的研究进展[J]. 化学学报, 2021, 79(5): 628-640. |
[3] | 张璐, 王文凤, 张洪明, 韩树民, 王利民. 水系锌离子电池研究进展和挑战[J]. 化学学报, 2021, 79(2): 158-175. |
[4] | 冯启琨, 张冬丽, 刘畅, 张涌新, 党智敏. 柔性高储能TPU/P(VDF-HFP)全有机复合薄膜的制备及性能表征[J]. 化学学报, 2021, 79(10): 1273-1280. |
[5] | 渠璐平, 任彤, 王宁, 史月丽, 庄全超. 硬碳材料电极首周嵌钠过程的电化学阻抗谱研究[J]. 化学学报, 2019, 77(7): 634-640. |
[6] | 邓邦为, 孙大明, 万琦, 王昊, 陈滔, 李璇, 瞿美臻, 彭工厂. 锂离子电池三元正极材料电解液添加剂的研究进展[J]. 化学学报, 2018, 76(4): 259-277. |
[7] | 李攀, 刘建, 孙惟袆, 陶占良, 陈军. 铜钱状二硫化钒的制备及储钠性能研究[J]. 化学学报, 2018, 76(4): 286-291. |
[8] | 贺倩, 张崇, 李晓, 王雪, 牟攀, 蒋加兴. 芘基共轭微孔聚合物用于锂离子电池电极材料性能研究[J]. 化学学报, 2018, 76(3): 202-208. |
[9] | 刘清朝, 马诗喻, 徐吉静, 李中军, 张新波. 锂-空气二次电池关键材料与器件的设计与制备[J]. 化学学报, 2017, 75(2): 137-146. |
[10] | 向兴德, 卢艳莹, 陈军. 钠离子电池先进功能材料的研究进展[J]. 化学学报, 2017, 75(2): 154-162. |
[11] | 夏兰, 余林颇, 胡笛, 陈政. 锂离子电池高电压和耐燃电解液研究进展[J]. 化学学报, 2017, 75(12): 1183-1195. |
[12] | 王瀛, 张丽敏, 胡天军. 金属空气电池阴极氧还原催化剂研究进展[J]. 化学学报, 2015, 73(4): 316-325. |
[13] | 蒋颉, 刘晓飞, 赵世勇, 何平, 周豪慎. 基于有机电解液的锂空气电池研究进展[J]. 化学学报, 2014, 72(4): 417-426. |
[14] | 金朝庆, 谢凯, 洪晓斌. 锂硫电池电解质研究进展[J]. 化学学报, 2014, 72(1): 11-20. |
[15] | 顾大明, 王余, 顾硕, 张传明, 杨丹丹. 锂空气电池非水基电解液的优化与研究进展[J]. 化学学报, 2013, 71(10): 1354-1364. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||