化学学报 ›› 2022, Vol. 80 ›› Issue (4): 526-534.DOI: 10.6023/A21120543 上一篇 下一篇
研究论文
郭瑞a, 魏星a, 曹末云a, 张研a, 杨云b, 樊继斌a, 刘剑c, 田野d, 赵泽坤a, 段理a,*()
投稿日期:
2021-12-02
发布日期:
2022-04-28
通讯作者:
段理
基金资助:
Rui Guoa, Xing Weia, Moyun Caoa, Yan Zhanga, Yun Yangb, Jibin Fana, Jian Liuc, Ye Tiand, Zekun Zhaoa, Li Duana()
Received:
2021-12-02
Published:
2022-04-28
Contact:
Li Duan
Supported by:
文章分享
由不同二维(2D)材料相互堆叠形成异质结构已成为目前的研究热点, 使用第一性原理的计算方法探究了AlAs/ InSe异质结构的几何结构、电子性能和光学性质. 结果表明, AlAs/InSe异质结构具有典型的Type-II型能带排列并且拥有着1.28 eV的间接带隙. 通过调节层间距或施加外部电场和应变, 可以有效地改变异质结构的带隙值. 有趣的是, 当应用5 V/nm的电场时, 异质结构实现了从Type-II向Type-I的转变. 此外, 与孤立单层相比, AlAs/InSe异质结构的吸光度明显提高, 特别是在紫外区域. 表明新型的二维AlAs/InSe异质结可以作为光电材料和紫外探测器件的有力候选者.
郭瑞, 魏星, 曹末云, 张研, 杨云, 樊继斌, 刘剑, 田野, 赵泽坤, 段理. AlAs/InSe范德华异质结构的光学和可调谐电子特性[J]. 化学学报, 2022, 80(4): 526-534.
Rui Guo, Xing Wei, Moyun Cao, Yan Zhang, Yun Yang, Jibin Fan, Jian Liu, Ye Tian, Zekun Zhao, Li Duan. Optical and Tunable Electronic Properties of AlAs/InSe Van Der Waals Heterostructures[J]. Acta Chimica Sinica, 2022, 80(4): 526-534.
System | LIn—In/nm | LIn—Se/nm | LAl— As/nm | d/nm | Eb/eV | EgPBE/eV |
---|---|---|---|---|---|---|
AlAs | 0.238 | 1.88 | ||||
InSe | 0.278 | 0.265 | 2.02 | |||
H1 | 0.280 | 0.266 | 0.236 | 0.306 | –0.94 | 1.28 |
H2 | 0.278 | 0.266 | 0.236 | 0.297 | –0.94 | 1.47 |
H3 | 0.280 | 0.266 | 0.236 | 0.297 | –0.94 | 1.47 |
System | LIn—In/nm | LIn—Se/nm | LAl— As/nm | d/nm | Eb/eV | EgPBE/eV |
---|---|---|---|---|---|---|
AlAs | 0.238 | 1.88 | ||||
InSe | 0.278 | 0.265 | 2.02 | |||
H1 | 0.280 | 0.266 | 0.236 | 0.306 | –0.94 | 1.28 |
H2 | 0.278 | 0.266 | 0.236 | 0.297 | –0.94 | 1.47 |
H3 | 0.280 | 0.266 | 0.236 | 0.297 | –0.94 | 1.47 |
[1] |
Li, J. P.; Huang, Z. M.; Ke, W.; Yu, J.; Ren, K.; Dong, Z. J. Alloys Compd. 2021, 866, 158774.
doi: 10.1016/j.jallcom.2021.158774 |
[2] |
Shang, Z. X.; Wang, K. M.; Li, M. H. Chem. Phys. Lett. 2021, 777, 138740.
doi: 10.1016/j.cplett.2021.138740 |
[3] |
Tan, X. Y.; Luo, J. Y.; Liu, L. L.; He, Y. L. Phys. E (Amsterdam, Neth.) 2020, 124, 114334.
|
[4] |
Chen, Q.; Kuang, Q.; Xie, Z. X. Acta Chim. Sinica 2021, 79, 10. (in Chinese)
doi: 10.6023/A20080384 |
(陈钱, 匡勤, 谢兆雄, 化学学报, 2021, 79, 10.)
doi: 10.6023/A20080384 |
|
[5] |
Liu, C. A.; Hong, S. B.; Li, B. Acta Chim. Sinica 2021, 79, 530. (in Chinese)
doi: 10.6023/A20100468 |
(刘长安, 洪士博, 李蓓, 化学学报, 2021, 79, 530.)
doi: 10.6023/A20100468 |
|
[6] |
Gao, Y. O.; Wang, X. C.; Mi, W. B. Comput. Mater. Sci. 2021, 187, 110085.
doi: 10.1016/j.commatsci.2020.110085 |
[7] |
Shokri, A.; Yazdani, A. J. Mater. Sci. 2021, 56, 5658.
doi: 10.1007/s10853-020-05561-y |
[8] |
Shu, H. B. Mater. Sci. Eng., B 2020, 261, 114672.
doi: 10.1016/j.mseb.2020.114672 |
[9] |
Lin, X. Y.; Wang, J. Acta Chim. Sinica 2017, 75, 979. (in Chinese)
doi: 10.6023/A17060282 |
(林潇羽, 王璟, 化学学报, 2017, 75, 979.)
doi: 10.6023/A17060282 |
|
[10] |
Bafekry, A.; Akgenc, B.; Shayesteh, S. F.; Mortazavi, B. Appl. Surf. Sci. 2020, 505, 144450.
doi: 10.1016/j.apsusc.2019.144450 |
[11] |
Yang, Y. B.; Yang, Y. F.; Xiao, Y.; Zhao, Y.; Luo, D. X.; Zheng, Z. Q.; Huang, L. Mater. Lett. 2018, 228, 289.
doi: 10.1016/j.matlet.2018.06.038 |
[12] |
Luo, M.; Xu, Y. E.; Song, Y. X. Optik 2017, 144, 334.
doi: 10.1016/j.ijleo.2017.06.100 |
[13] |
Tan, X. Y.; Yang, S. Y.; Li, H. J. Acta Chim. Sinica 2017, 75, 271. (in Chinese)
doi: 10.6023/A16100552 |
(谭晓宇, 杨少延, 李辉杰, 化学学报, 2017, 75, 271.)
doi: 10.6023/A16100552 |
|
[14] |
Muhsen Almayyali, A. O.; Kadhim, B. B.; Jappor, H. R. Phys. E 2020, 118, 113866.
doi: 10.1016/j.physe.2019.113866 |
[15] |
Zou, H.; Peng, M. Q.; Zhou, W. Z.; Pan, J. L.; Ouyang, F. P. Phys. E (Amsterdam, Neth.) 2021, 126, 114481.
|
[16] |
Ni, H.; Li, M.; Hu, Y. H.; Mao, C. X.; Xue, L.; Zeng, H. B.; Yan, Z.; Wu, Y. Y.; Zheng, C. D. J. Phys. Chem. Solids 2019, 131, 223.
doi: 10.1016/j.jpcs.2019.01.011 |
[17] |
Zhang, F.; Li, W.; Dai, X. Q. Superlattices Microstruct. 2017, 104, 518.
doi: 10.1016/j.spmi.2017.02.045 |
[18] |
Liu, J. T.; Xue, M. M.; Wang, J. L.; Sheng, H. H.; Tang, G.; Zhang, J. T.; Bai, D. M. Vacuum 2019, 163, 128.
doi: 10.1016/j.vacuum.2019.01.051 |
[19] |
Attia, A. A.; Jappor, H. R. Chem. Phys. Lett. 2019, 728, 124.
doi: 10.1016/j.cplett.2019.05.005 |
[20] |
Yuan, P. F.; Han, J. N.; Fan, Z. Q.; Zhang, Z. H.; Wang, C. Z. J. Phys.: Condens. Matter 2020, 32, 475001.
doi: 10.1088/1361-648X/abaf12 |
[21] |
Pham, K. D.; Nguyen, C. V.; Phung, H. T. T.; Phuc, H. V.; Amin, B.; Hieu, N. N. Chem. Phys. 2019, 521, 92.
doi: 10.1016/j.chemphys.2019.02.005 |
[22] |
Chen, D. C.; Lei, X. L.; Wang, Y. N.; Zhong, S. Y.; Liu, G.; Xu, B.; Ouyang, C. Y. Appl. Surf. Sci. 2019, 497, 143809.
doi: 10.1016/j.apsusc.2019.143809 |
[23] |
Cao, H. X.; Zhou, Z. B.; Zhou, X. L.; Cao, J. C. Comput. Mater. Sci. 2017, 139, 179.
|
[24] |
Zhao, M.; Song, P.; Teng, J. H. ACS Appl. Mater. Interfaces 2018, 10, 44102.
doi: 10.1021/acsami.8b12588 |
[25] |
Zhu, J. D.; Ning, J.; Wang, D.; Zhang, J. C.; Guo, L. X.; Hao, Y. Superlattices Microstruct. 2019, 129, 274.
doi: 10.1016/j.spmi.2019.04.005 |
[26] |
Pham, K. D.; Hieu, N. N.; Ilyasov, V. V.; Phuc, H. V.; Hoi, B. D.; Feddi, E.; Thuan, N. V.; Nguyen, C. V. Superlattices Microstruct. 2018, 122, 570.
doi: 10.1016/j.spmi.2018.06.049 |
[27] |
Yang, X. H.; Sa, B. S.; Lin, P.; Xu, C.; Zhu, Q.; Zhan, H. B.; Sun, Z. M. J. Phys. Chem. C 2020, 124, 23699.
doi: 10.1021/acs.jpcc.0c06890 |
[28] |
Sengupta, A.; Dominguez, A.; Frauenheim, T. Appl. Surf. Sci. 2019, 475, 774.
doi: 10.1016/j.apsusc.2019.01.054 |
[29] |
Cheng, Y. F.; Li, L.; Li, L. Y.; Zhang, Y. N.; Wang, L. X.; Wang, L. F.; Zhang, Z.; Gao, Y. H. Surf. Interfaces 2021, 23, 101014.
|
[30] |
Xi, F.; Sun, F. W.; Yao, R.; Zhang, Y.; Zhang, Y. H.; Zhang, Z. H.; Fan, J. B.; Ni, L.; Duan, L. Appl. Surf. Sci. 2019, 475, 839.
doi: 10.1016/j.apsusc.2018.12.135 |
[31] |
Yan, F.; Zhao, L.; Patane, A.; Hu, P.; Wei, X.; Luo, W.; Zhang, D.; Lv, Q.; Feng, Q.; Shen, C.; Chang, K.; Eaves, L.; Wang, K. Nanotechnology 2017, 28, 27LT01.
doi: 10.1088/1361-6528/aa749e |
[32] |
Chang, J. L.; Dong, N.; Wang, G. Z.; Jiang, L. P.; Yuan, H. K.; Chen, H. Appl. Surf. Sci. 2021, 554, 149465.
doi: 10.1016/j.apsusc.2021.149465 |
[33] |
Shang, J. M.; Pan, L. F.; Wang, X. T.; Li, J. B.; Deng, H. X.; Wei, Z. M. J. Mater. Chem. C 2018, 6, 7201.
doi: 10.1039/C8TC01533C |
[34] |
Shen, N. F.; Yang, X. D.; Wang, X. X.; Wang, G. H.; Wan, J. G. Chem. Phys. Lett. 2019, 727, 50.
doi: 10.1016/j.cplett.2019.04.055 |
[35] |
Niu, X.; Li, Y.; Zhang, Y.; Zheng, Q.; Zhao, J.; Wang, J. J. Mater. Chem. C 2019, 7, 1864.
doi: 10.1039/C8TC06208K |
[36] |
He, C.; Zhang, J. H.; Zhang, W. X.; Li, T. T. J. Phys. Chem. Lett. 2019, 10, 3122.
doi: 10.1021/acs.jpclett.9b00909 pmid: 31117679 |
[37] |
del Alamo, J. A. Nature 2011, 479, 317.
doi: 10.1038/nature10677 |
[38] |
Dayeh, S. A.; Aplin, D. P.; Zhou, X.; Yu, P. K.; Yu, E. T.; Wang, D. Small 2007, 3, 326.
doi: 10.1002/smll.200600379 |
[39] |
Tan, C. J.; Yang, Q.; Meng, R. S.; Liang, Q. H.; Jiang, J. K.; Sun, X.; Ye, H. Y.; Chen, X. P. J. Mater. Chem. C 2016, 4, 8171.
doi: 10.1039/C6TC02951E |
[40] |
Jia, Y. F.; Wei, X.; Zhang, Z. H.; Liu, J.; Tian, Y.; Zhang, Y.; Guo, T. T.; Fan, J. B.; Ni, L.; Luan, L. J.; Duan, L. CrystEngComm 2021, 23, 1033.
doi: 10.1039/D0CE01633K |
[41] |
Zhang, R.; Zhang, Y.; Wei, X.; Guo, T. T.; Fan, J. B.; Ni, L.; Weng, Y. J.; Zha, Z. D.; Liu, J.; Tian, Y.; Li, T.; Duan, L. Appl. Surf. Sci. 2020, 528, 146782.
doi: 10.1016/j.apsusc.2020.146782 |
[42] |
Wang, Z.; Zhang, Y.; Wei, X.; Guo, T. T.; Fan, J. B.; Ni, L.; Weng, Y. J.; Zha, Z. D.; Liu, J.; Tian, Y.; Li, T.; Duan, L. Phys. Chem. Chem. Phys. 2020, 22, 9647.
doi: 10.1039/d0cp00291g pmid: 32328602 |
[43] |
Wang, Z.; Sun, F. W.; Liu, J.; Tian, Y.; Zhang, Z. H.; Zhang, Y.; Wei, X.; Guo, T. T.; Fan, J. B.; Ni, L.; Duan, L. Phys. Chem. Chem. Phys. 2020, 22, 20712.
doi: 10.1039/d0cp02721a pmid: 32901624 |
[44] |
Yao, F.; Yang, M. J.; Chen, Y. T.; Zhou, X. L.; Wang, L. H. Chem. Phys. Lett. 2021, 765, 138194.
doi: 10.1016/j.cplett.2020.138194 |
[45] |
Tang, Y.; Liu, M. P.; Zhou, Y. T.; Ren, C. L.; Zhong, X. L.; Wang, J. B. J. Alloys Compd. 2020, 842, 155901.
doi: 10.1016/j.jallcom.2020.155901 |
[46] |
Zhang, R.; Sun, F. W.; Zhang, Z. H.; Liu, J.; Tian, Y.; Zhang, Y.; Wei, X.; Guo, T. T.; Fan, J. B.; Ni, L.; Duan, L. Appl. Surf. Sci. 2021, 535, 147825.
doi: 10.1016/j.apsusc.2020.147825 |
[47] |
Wang, D. H.; Ju, W. W.; Li, T. W.; Zhou, Q. X.; Zhang, Y.; Gao, Z. J.; Kang, D. W.; Li, H. S.; Gong, S. J. J. Phys.: Condens. Matter 2020, 33, 045501.
doi: 10.1088/1361-648X/abbc35 |
[48] |
Yao, F.; Zhou, X. L.; Xiong, A. H. Appl. Phys. A: Solids Surf. 2020, 126, 499.
|
[49] |
Wang, G. Z.; Zhang, L.; Li, Y. M.; Zhao, W. X.; Kuang, A. L. D.; Li, Y.; Xia, L. P.; Li, Y.; Xiao, S. Y. J. Phys. D: Appl. Phys. 2020, 53, 015014.
|
[50] |
Do, T. N.; Idrees, M.; Amin, B.; Hieu, N. N.; Phuc, H. V.; Hoa, L. T.; Nguyen, C. V. Chem. Phys. 2020, 539, 110939.
doi: 10.1016/j.chemphys.2020.110939 |
[51] |
Zheng, J. S.; Li, E. L.; Cui, Z.; Ma, D. M. Phys. E (Amsterdam, Neth.) 2020, 124, 114277.
|
[52] |
Yang, X. G.; Qin, X. D.; Luo, J. X.; Abbas, N.; Tang, J. N.; Li, Y.; Gu, K. M. RSC Adv. 2020, 10, 2615.
doi: 10.1039/C9RA10087C |
[53] |
Sheng, W.; Xu, Y.; Liu, M. W.; Nie, G. Z.; Wang, J. N.; Gong, S. J. Phys. Chem. Chem. Phys. 2020, 22, 21436.
doi: 10.1039/d0cp03831h pmid: 32945319 |
[54] |
Wang, B. J.; Li, X. H.; Zhao, R. Q.; Cai, X. L.; Yu, W. Y.; Li, W. B.; Liu, Z. S.; Zhang, L. W.; Ke, S. H. J. Mater. Chem. A 2018, 6, 8923.
doi: 10.1039/C8TA01019F |
[55] |
Luo, X. K.; Wang, G. Z.; Huang, Y. H.; Wang, B.; Yuan, H. K.; Chen, H. Phys. Chem. Chem. Phys. 2017, 19, 28216.
doi: 10.1039/C7CP04108J |
[56] |
Togo, A.; Tanaka, I. Scr. Mater. 2015, 108, 1.
doi: 10.1016/j.scriptamat.2015.07.021 |
[57] |
Su, J. N.; Chen, J. J.; Pan, M.; Hu, K. G.; Wen, M. R.; Xing, X. J.; Tang, Z. H.; Wu, F. G.; Nie, Z. G.; Dong, H. F. Sci. Sin.-Phys. Mech. Astron. 2021, 51, 087312. (in Chinese)
doi: 10.1360/SSPMA-2021-0046 |
(苏进楠, 陈俊杰, 潘敏, 胡凯歌, 文敏儒, 邢祥军, 唐振华, 吴福根, 聂兆刚, 董华锋, 中国科学: 物理学力学天文学, 2021, 51, 087312.)
|
[1] | 王珞聪, 李哲伟, 岳彩巍, 张培焕, 雷鸣, 蒲敏. 电场下偶氮苯衍生物分子顺反异构化反应机理的理论研究[J]. 化学学报, 2022, 80(6): 781-787. |
[2] | 邱凯, 严铭霞, 赵守旺, 安胜利, 王玮, 贾桂霄. Al掺杂的锂离子电池层状正极材料Li(Li0.17Ni0.17Al0.04Fe0.13Mn0.49)O2结构稳定性及氧离子氧化的理论研究[J]. 化学学报, 2021, 79(9): 1146-1153. |
[3] | 陆远, 王继芬, 谢华清. LiMn2O4尖晶石氧化物的低指数表面结构优化及表面能的第一性原理研究[J]. 化学学报, 2021, 79(8): 1058-1064. |
[4] | 杨晶亮, 杨伟民, 林嘉盛, 汪安, 徐娟, 李剑锋. 电场强度对等离激元诱导热电子的影响[J]. 化学学报, 2020, 78(7): 670-674. |
[5] | 吴其胜, 王子路, 王金兰. 单轴应变对石墨烯掺杂硼、氮、铝、硅、磷的影响与调控[J]. 化学学报, 2014, 72(12): 1233-1237. |
[6] | 刘媛媛. 新型光催化材料石墨炔-TiO2的第一性原理研究[J]. 化学学报, 2013, 71(02): 260-264. |
[7] | 陈进, 李振庆, 倪一, 刘晨晨, 窦晓鸣, 山口佳则. 电场方式对毛细管电泳分离DNA的影响[J]. 化学学报, 2012, 70(19): 2073-2078. |
[8] | 黄晓, 谭莹, 许旋, 徐志广. 电场对杂金属串配合物[CuCuM(npa)4Cl]+(M=Pt, Pd, Ni)结构影响的理论研究[J]. 化学学报, 2012, 70(18): 1979-1986. |
[9] | 史顺平, 罗文浪, 朱正和, 刘秀华, 傅依备, 蒋刚, 王蓉, 滑亚文. 外偶极电场作用下H2O, D2O和T2O的可逆分解电压[J]. 化学学报, 2010, 68(10): 975-981. |
[10] | 闫安英,宋晓书,姜明. 电场中B2分子特性研究[J]. 化学学报, 2009, 67(16): 1875-1879. |
[11] | 袁丛辉,林松柏,柯爱茹,刘博,全志龙. 大孔PAMPS/PVA半互穿网络型水凝胶的制备及其性能研究[J]. 化学学报, 2009, 67(16): 1929-1935. |
[12] | 黄多辉,a,b 王藩侯a 朱正和c. 外电场下氮化铝分子结构和光谱研究[J]. 化学学报, 2008, 66(13): 1599-1603. |
[13] | 姚成漳,张新荣,王路存,曹勇,戴维林, 范康年,吴东,孙予罕. 高效甲醇水蒸气重整制氢的SBA-15改性的Cu/ZnO/Al2O3催化剂[J]. 化学学报, 2006, 64(3): 269-272. |
[14] | 谢颖,强亮生,仲华,于海涛,付宏刚. 钛酸铅和钛酸钡振动性质及铁电相变的密度泛函理论研究[J]. 化学学报, 2005, 63(6): 455-459. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||