化学学报 ›› 2023, Vol. 81 ›› Issue (9): 1175-1186.DOI: 10.6023/A23050213 上一篇    下一篇

所属专题: 庆祝《化学学报》创刊90周年合辑

研究展望

面向神经电子接口器件的有机材料进展与展望

贾凌轩a,b, 詹泽庞a,b, 贺紫晗a,*(), 狄重安a,*(), 朱道本a   

  1. a 中国科学院化学研究所有机固体重点实验室 北京 100190
    b 中国科学院大学 化学科学学院 北京 100049
  • 投稿日期:2023-05-07 发布日期:2023-06-29
  • 作者简介:

    贾凌轩, 中国科学院化学研究所2020级在读博士生, 2020年获中国科学院大学化学学士学位. 研究方向为柔性可植入有机电子器件.

    詹泽庞, 中国科学院化学研究所2021级在读硕博生. 2021年获得暨南大学应用化学学士学位, 研究方向为有机光电材料与器件.

    贺紫晗, 中国科学院化学研究所在站博士后. 2022年获得中国科学院大学理学博士学位. 主要研究方向为基于有机晶体管的生物电子器件.

    狄重安, 2008年于中科院化学所获得博士学位, 于化学所工作至今, 历任助理研究员、副研究员和研究员, 主要从事有机半导体的电荷输运调控与器件功能化方面的研究工作.

    朱道本, 中国科学院化学研究所研究员, 1968年于华东理工大学研究生毕业, 1997年被选为中国科学院院士, 研究领域主要为有机固体, 包括有机导体、超导体, 富勒烯及其衍生物, 分子材料及器件等.

    庆祝《化学学报》创刊90周年.
  • 基金资助:
    国家自然科学基金(22125504); 国家自然科学基金(62075224); 国家自然科学基金(22021002); 卢嘉锡国际团队项目(GJTD-2020-02)

Advances and Perspectives on Organic Materials for Neuroelectronic Interface Devices

Lingxuan Jiaa,b, Zepang Zhana,b, Zihan Hea(), Chong-an Dia(), Daoben Zhua   

  1. a Key Laboratory of Organic Solid, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
    b School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2023-05-07 Published:2023-06-29
  • Contact: *E-mail: hezihan@iccas.ac.cn; dicha@iccas.ac.cn
  • About author:
    Dedicated to the 90th anniversary of Acta Chimica Sinica.
  • Supported by:
    The National Natural Science Foundation of China(22125504); The National Natural Science Foundation of China(62075224); The National Natural Science Foundation of China(22021002); The K.C. Wong Education Foundation(GJTD-2020-02)

神经电子接口器件能够在生物体神经系统界面与数字世界之间创建直接连接, 实现信号的采集、操控与反馈, 是实现神经系统与外界双向交互的桥梁. 有机分子具有多重弱相互作用, 是与生命体的分子结构和力学性质最相似的光电功能材料, 是用来构筑神经接口材料与器件的理想载体. 本文总结了面向神经电子接口器件的有机材料研究进展, 汇总了有机材料在分子设计和聚集态结构调控方面的研究策略, 并展望了神经接口器件的有机材料发展方向.

关键词: 神经电子接口, 共轭聚合物, 电信号可调性, 力学适配性, 生物相容性, 分子设计, 聚集态调控

Neuroelectronic interface devices create a direct connection between the interface of a living organism's nervous system and the digital world, enabling the acquisition, manipulation and feedback of signals and acting as a bridge for two-way interaction between the nervous system and the outside world. Organic materials with multiple weak interactions between molecules are the most similar to living organisms taking account of their molecular structure and mechanical properties as optoelectronic functional materials and are ideal candidates for constructing neural interface materials and devices. This paper summarizes the progress of neuroelectronic interface devices based on organic materials, as well as the strategies for modulating the functional properties of organic materials in terms of both molecular design and aggregation state modulation, and discusses the future directions of neural interface devices.

Key words: neuroelectronic interface, conjugated polymer, electrical signal tenability, mechanical compliance, biocompatibility, molecular design, aggregate states modulation