化学学报 ›› 2023, Vol. 81 ›› Issue (11): 1577-1589.DOI: 10.6023/A23060284 上一篇 下一篇
综述
杨保民a, 张水滔a, 董鲜b, 秦贵平a,*(), 江玉波a,*()
投稿日期:
2023-06-12
发布日期:
2023-08-14
作者简介:
杨保民, 昆明理工大学高级工程师, 硕士生导师. 1984年进入昆明理工大学从事化学教学与实验室管理工作, 2004年筹建昆明理工大学基础有机化学实验中心, 为选择性催化与合成研究团队成员. 主要研究方向为化学分离与富集, 以第一作者或通讯作者身份发表学术论文10余篇. |
秦贵平, 昆明理工大学副教授, 硕士生导师, 2018年博士毕业于中国科学院大学(中国科学院兰州化学物理研究所), 师从黄汉民教授, 同年进入昆明理工大学开展科研工作. 主要从事过渡金属催化的还原交叉偶联合成碳碳键、过渡金属催化的不对称反应以及季碳合成. 以第一作者或通讯作者身份在J. Am. Chem. Soc.、ACS Catal.、Org. Lett.、Org. Chem. Front.、ACS Sustainable Chem. Eng.等期刊发表学术论文10余篇. |
江玉波, 昆明理工大学教授, 硕士生导师, 有机化学学科方向带头人, 选择性催化与合成研究团队负责人. 2011年博士毕业于同济大学, 师从匡春香教授和王剑波教授, 同年进入昆明理工大学开展工作, 曾先后访学于北京大学及牛津大学. 主要研究兴趣: (1)功能化1,2,3-三氮唑衍生物的合成及应用; (2)杂原子的配位性能及应用; (3)碳-氢键活化构建策略; (4)抗菌活性导向的产品结构设计、合成与应用. 以第一作者或通讯作者身份在Chem. Soc. Rev.、Org. Lett.、Org. Chem. Front.、Adv. Synth. Catal.、Org. Biomol. Chem.、《有机化学》及《化学进展》等期刊发表学术论文50余篇. |
基金资助:
Baomin Yanga, Shuitao Zhanga, Xian Dongb, Guiping Qina(), Yubo Jianga()
Received:
2023-06-12
Published:
2023-08-14
Contact:
*E-mail: Supported by:
文章分享
1,2,3-三氮唑是一类广泛应用在医药、农药以及材料等领域的五元氮杂环结构. 自2002年Sharpless和Meldal等发展了铜催化叠氮-炔偶极环加成反应以来, 1,2,3-三唑化学在有机合成和药物化学领域的应用进入了新的发展阶段. 4-单取代-1,2,3-三氮唑是该类化合物家族中的重要成员之一, 其结构具有易于修饰转化的优点, 由此可获得结构新颖、种类多样的衍生物分子. 主要综述了4-单取代-1,2,3-三氮唑在结构修饰方面的研究进展, 转化情况根据反应位点的不同分别展开, 包括N1、N2以及N3位, 并讨论了反应的底物范围、局限性以及代表性反应机理.
杨保民, 张水滔, 董鲜, 秦贵平, 江玉波. 4-单取代-1,2,3-三氮唑的修饰转化研究进展[J]. 化学学报, 2023, 81(11): 1577-1589.
Baomin Yang, Shuitao Zhang, Xian Dong, Guiping Qin, Yubo Jiang. Advances in the Modifications of 4-Monosubstituted 1,2,3-Triazoles[J]. Acta Chimica Sinica, 2023, 81(11): 1577-1589.
[1] |
(a) Vitaku E.; Smith D. T.; Njardarson J. T. J. Med. Chem. 2014, 57, 10257.
doi: 10.1021/jm501100b pmid: 25255204 |
(b) Liu X.; Kuang C.; Su C. Acta Chim. Sinica 2022, 80, 1135. (in Chinese)
doi: 10.6023/A22040147 pmid: 25255204 |
|
( 刘霞, 匡春香, 苏长会, 化学学报, 2022, 80, 1135.)
doi: 10.6023/A22040147 pmid: 25255204 |
|
[2] |
(a) Suzuki T.; Ota Y.; Ri M.; Bando M.; Gotoh A.; Itoh Y.; Tsumoto H.; Tatum P. R.; Mizukami T.; Nakagawa H. J. Med. Chem. 2012, 55, 9562.
doi: 10.1021/jm300837y |
(b) Sun L.; Huang T.; Dick A.; Meuser M. E.; Zalloum W. A.; Chen C.-H.; Ding X.; Gao P.; Cocklin S.; Lee K.-H.; Zhan P.; Liu X. Eur. J. Med. Chem. 2020, 190, 112085.
doi: 10.1016/j.ejmech.2020.112085 |
|
(c) Othman E. M.; Fayed E. A.; Husseiny E. M.; Abulkhair H. S. Bioorg. Chem. 2022, 123, 105762.
doi: 10.1016/j.bioorg.2022.105762 |
|
(d) Xiao L.; Shi D. Chin. J. Org. Chem. 2010, 30, 85. (in Chinese)
|
|
( 肖琳霞, 石德清, 有机化学, 2010, 30, 85.)
|
|
(e) Chen Z.; Jiang Y.; Xu C.; Sun X.; Ma C.; Xia Z.; Zhao H. Molecules 2022, 27, 4928.
doi: 10.3390/molecules27154928 |
|
(f) Dong Y.; Hu X.; Duan C.; Liu P.; Liu S.; Lan L.; Chen D.; Ying L.; Su S.; Gong X.; Huang F.; Cao Y. Adv. Mater. 2013, 25, 3683.
doi: 10.1002/adma.v25.27 |
|
(g) Zhou J.; Lei P.; Geng Y.; He Z.; Li X.; Zeng Q.; Tang A.; Zhou E. J. Mater. Chem. A 2022, 10, 9869.
doi: 10.1039/D2TA00812B |
|
[3] |
(a) Huisgen R. Angew. Chem., Int. Ed. 1963, 2, 565.
doi: 10.1002/anie.v2:10 |
(b) Huisgen R. Angew. Chem., Int. Ed. 1963, 2, 633.
doi: 10.1002/anie.v2:11 |
|
(c) Huisgen R. Pure Appl. Chem. 1989, 61, 613.
doi: 10.1351/pac198961040613 |
|
(d) Qiu K.; Li J.; Ma H.; Zhou W.; Cai Q. Acta Chim. Sinica 2023, 81, 42. (in Chinese)
doi: 10.6023/A22100419 |
|
( 邱孔茜, 李杰, 马浩文, 周伟, 蔡倩, 化学学报, 2023, 81, 42.)
doi: 10.6023/A22100419 |
|
[4] |
(a) Rostovtsev V. V.; Green L. G.; Fokin V. V.; Sharpless K. B. Angew. Chem., Int. Ed. 2002, 41, 2596.
doi: 10.1002/(ISSN)1521-3773 |
(b) Tornøe C. W.; Christensen C.; Meldal M. J. Org. Chem. 2002, 67, 3057.
doi: 10.1021/jo011148j |
|
(c) Meldal M.; Tornøe C. W. Chem. Rev. 2008, 108, 2952.
doi: 10.1021/cr0783479 |
|
(d) Xu L.; Dong J. Chin. J. Chem. 2020, 38, 414.
doi: 10.1002/cjoc.v38.4 |
|
(e) Schulze B.; Schubert U. S. Chem. Soc. Rev. 2014, 43, 2522.
doi: 10.1039/c3cs60386e |
|
[5] |
(a) Liu Z.; Ji H.; Gao W.; Zhu G.; Tong L.; Lei F.; Tang B. Chem. Commun. 2017, 53, 6259.
doi: 10.1039/C7CC02391J |
(b) Ji J.; Guan C.; Wei Q.; Chen X.; Zhao Y.; Liu S. Org. Lett. 2022, 24, 132.
doi: 10.1021/acs.orglett.1c03743 |
|
(c) Zhu L.; Zhang H.; Wang C.; Chen Z. Chin. J. Org. Chem. 2018, 38, 1052. (in Chinese)
|
|
( 朱莉莉, 张辉, 王春杰, 陈自立, 有机化学, 2018, 38, 1052.)
doi: 10.6023/cjoc201710018 |
|
[6] |
(a) Zhang W.; Kuang C.; Yang Q. Chin. J. Org. Chem. 2011, 31, 54. (in Chinese)
|
( 张文生, 匡春香, 杨青, 有机化学, 2011, 31, 54.)
|
|
(b) Agalave S. G.; Maujan S. R.; Pore V. S. Chem.-Asian J. 2011, 6, 2696.
doi: 10.1002/asia.v6.10 |
|
[7] |
McAllister L. A.; Montgomery J. I.; Abramite J. A.; Reilly U.; Brown M. F.; Chen J. M.; Barham R. A.; Che Y.; Chung S. W.; Menard C. A.; Mark M.-F.; Mullins L. M.; Noe M. C.; Donnell J. P.; Oliver R. M. III; Penzien J. B.; Plummer M.; Price L. M.; Shanmugasundaram V.; Tomaras A. P.; Uccello D. P. Bioorg. Med. Chem. Lett. 2012, 22, 6832.
doi: 10.1016/j.bmcl.2012.09.058 pmid: 23046961 |
[8] |
Hsu K.-L.; Tsuboi K.; Whitby L. R.; Speers A. E.; Pugh H.; Inloes J.; Cravatt B. F. J. Med. Chem. 2013, 56, 8257.
doi: 10.1021/jm400898x |
[9] |
Thirumurugan P.; Matosiuk D.; Jozwiak K. Chem. Rev. 2013, 113, 4905.
doi: 10.1021/cr200409f pmid: 23531040 |
[10] |
Saroha B.; Kumar G.; Kumar R.; Kumari M.; Kumar S. Chem. Biol. Drug Des. 2021, 100, 843.
doi: 10.1111/cbdd.v100.6 |
[11] |
Umapathi N.; Jalapathi P.; Raghavender M.; Shankar B. Asian J. Chem. 2021, 33, 2341.
doi: 10.14233/ajchem |
[12] |
Natarajan R.; Kesavan Y.; Sivaperuman A.; Subramani A. Curr. Bioact. Compd. 2022, 18, e070322201800.
doi: 10.2174/1573407218666220307103154 |
[13] |
(a) Chen Y.; Liu Y.; Petersen J. L.; Shi X. Chem. Commun. 2008, 28, 3254.
|
(b) Liu Y.; Yan W.; Chen Y.; Petersen J. L.; Shi X. Org. Lett. 2008, 10, 5389.
doi: 10.1021/ol802246q |
|
(c) Madadi N. R.; Penthala N. R.; Song L.; Hendrickson H. P.; Crooks P. A. Tetrahedron Lett. 2014, 55, 4207.
doi: 10.1016/j.tetlet.2014.05.045 |
|
(d) Madadi N. R.; Penthala N. R.; Howk K.; Ketkar A.; Eoff R. L.; Borrelli M. J.; Crooks P. A. Eur. J. Med. Chem. 2015, 103, 123.
doi: 10.1016/j.ejmech.2015.08.041 |
|
(e) Reddy R. J.; Waheed M.; Karthik T.; Shankar A. New J. Chem. 2018, 42, 980.
doi: 10.1039/C7NJ03292G |
|
(f) Yang J.; Yin W.; Liu R.; Chu C. Chin. J. Chem. 2012, 30, 2786.
doi: 10.1002/cjoc.v30.12 |
|
[14] |
Wang J.; Yu J.; Chen J.; Jiang Y.; Xiao T. Org. Biomol. Chem. 2021, 19, 6974.
doi: 10.1039/D1OB01129D |
[15] |
Zhao S.; Liu J.; Lv Z.; Zhang G.; Xu Z. Eur. J. Med. Chem. 2023, 251, 115254.
doi: 10.1016/j.ejmech.2023.115254 |
[16] |
Thottempudi V.; Yin P.; Zhang J.; Parrish D. A.; Shreeve J. M. Chem.-Eur. J. 2014, 20, 542.
doi: 10.1002/chem.201303469 pmid: 24285702 |
[17] |
Franco C. A.; da Silva T. I.; Dias M. G.; Ferreira B. W.; de Sousa B. L.; Bousada G. M.; Barreto R. W.; Vaz B. G.; Lima G. S.; Santos M. H. D.; Grossi J. A. S.; Varejão E. V. V. J. Agric. Food Chem. 2022, 70, 2806.
doi: 10.1021/acs.jafc.1c06012 |
[18] |
(a) Liao Y.; Lu Q.; Chen G.; Yu Y.; Li C.; Huang X. ACS Catal. 2017, 7, 7529.
doi: 10.1021/acscatal.7b02558 pmid: 35377624 |
(b) Kumar N.; Bhadoria D.; Kumar A. Green Chem. 2021, 23, 7987.
doi: 10.1039/D1GC02328D pmid: 35377624 |
|
(c) Fang D.; Zhang Z.-Y.; Shangguan Z.; He Y.; Yu C.; Li T. J. Am. Chem. Soc. 2021, 143, 14502.
doi: 10.1021/jacs.1c08704 pmid: 35377624 |
|
(d) Zeng L.; Lai Z.; Zhang C.; Xie H.; Cui S. Org. Lett. 2020, 22, 2220.
doi: 10.1021/acs.orglett.0c00394 pmid: 35377624 |
|
(e) Duan X.; Zheng N.; Liu G.; Li M.; Wu Q.; Sun X.; Song W. Org. Lett. 2022, 24, 6006.
doi: 10.1021/acs.orglett.2c02273 pmid: 35377624 |
|
(f) Guo W.-T.; Zhu B.-H.; Chen Y.; Yang J.; Qian P.-C.; Deng C.; Ye L.-W.; Li L. J. Am. Chem. Soc. 2022, 144, 6981.
doi: 10.1021/jacs.2c01985 pmid: 35377624 |
|
(g) Zhang X.; Li S.; Yu W.; Xie Y.; Tung C.-H.; Xu Z. J. Am. Chem. Soc. 2022, 144, 6200.
doi: 10.1021/jacs.2c02563 pmid: 35377624 |
|
(h) Qin C.-Q.; Zhao C.; Chen G.-S.; Liu Y.-L. ACS Catal. 2023, 13, 6301.
doi: 10.1021/acscatal.3c00911 pmid: 35377624 |
|
(i) Rahul P.; Thomas J.; Dehaen W.; John J. Molecules 2023, 28, 308.
doi: 10.3390/molecules28010308 pmid: 35377624 |
|
(j) Wei F.; Wang W.; Ma Y.; Tung C.-H.; Xu Z. Chem. Commun. 2016, 52, 14188.
doi: 10.1039/C6CC06194J pmid: 35377624 |
|
(k) Spiteri C.; Moses J. E. Angew. Chem., Int. Ed. 2010, 49, 31.
doi: 10.1002/anie.v49:1 pmid: 35377624 |
|
[19] |
Samanta S.; Ravi C.; Rao S. N.; Joshi A.; Adimurthy S. Org. Biomol. Chem. 2017, 15, 9590.
doi: 10.1039/C7OB02504A |
[20] |
Yi H.; Chen H.; Bian C.; Tang Z.; Singh A. K.; Qi X.; Yue X.; Lan Y.; Lee J.-F.; Lei A. Chem. Commun. 2017, 53, 6736.
doi: 10.1039/C7CC02601C |
[21] |
Li T.; Chen B.-L.; Zhu L.-L.; Chen Z. Tetrahedron Lett. 2020, 61, 151851.
doi: 10.1016/j.tetlet.2020.151851 |
[22] |
Chao Z.; Ma M.; Gu Z. Org. Lett. 2020, 22, 6441.
doi: 10.1021/acs.orglett.0c02256 |
[23] |
Berthold D.; Breit B. Org. Lett. 2018, 20, 598.
doi: 10.1021/acs.orglett.7b03708 pmid: 29350041 |
[24] |
Yang Y.-Z.; Song R.-J.; Li J.-H. Org. Lett. 2019, 21, 3228.
doi: 10.1021/acs.orglett.9b00947 |
[25] |
Tiwari V.; Bingham J. T.; Vyas S.; Singh A. Org. Biomol. Chem. 2020, 18, 9044.
doi: 10.1039/d0ob01697g pmid: 33150911 |
[26] |
Rai V.; Kavyashree P.; Harmalkar S. S.; Dhuri S. N.; Maddani M. R. Org. Biomol. Chem. 2022, 20, 345.
doi: 10.1039/D1OB01717A |
[27] |
Zhang L.; Yi H.; Wang J.; Lei A. J. Org. Chem. 2017, 82, 10704.
doi: 10.1021/acs.joc.7b01841 |
[28] |
Wu J.; Zhou Y.; Zhou Y.; Chiang C.-W.; Lei A. ACS Catal. 2017, 7, 8320.
doi: 10.1021/acscatal.7b03551 |
[29] |
Wu J.; Zhu J.; Yu L.; Yu X.; Li W.; Xie L.; Wu J.; Li Z. Asian J. Org. Chem. 2022, 11, e202200551.
doi: 10.1002/ajoc.v11.12 |
[30] |
Tan Z.; Xiang F.; Xu K.; Zeng C. Org. Lett. 2022, 24, 5345.
doi: 10.1021/acs.orglett.2c01983 |
[31] |
Tang Z.-L.; Ouyang X.-H.; Song R.-J.; Li J.-H. Org. Lett. 2021, 23, 1000.
doi: 10.1021/acs.orglett.0c04203 |
[32] |
Wang C.; Ji X.; Deng G.-J.; Huang H. Org. Biomol. Chem. 2022, 20, 1200.
doi: 10.1039/D1OB02333K |
[33] |
Beryozkina T. V.; Efimov I. V.; Fabian W. M. F.; Beliaev N. A.; Slepukhin P. A.; Isenov M. L.; Dehaen W.; Lubec G.; Eltsov O. S.; Fan Z.; Thomas J.; Bakulev V. A. Tetrahedron 2015, 71, 6189.
doi: 10.1016/j.tet.2015.06.088 |
[34] |
Ueda S.; Su M.; Buchwald S. L. Angew. Chem., Int. Ed. 2011, 50, 8944.
doi: 10.1002/anie.v50.38 |
[35] |
Lopes A. B.; Wagner P.; Kümmerle A. E.; Bihel F.; Bourguignon J.-J.; Schmitt M.; Miranda L. S. M. ChemistrySelect 2017, 2, 6544.
doi: 10.1002/slct.v2.22 |
[36] |
Wen J.; Zhu L.-L.; Bi Q.-W.; Shen Z.-Q.; Li X.-X.; Li X.; Wang Z.; Chen Z. Chem.-Eur. J. 2014, 20, 974.
doi: 10.1002/chem.v20.4 |
[37] |
Gu C.-X.; Bi Q.-W.; Gao C.-K.; Wen J.; Zhao Z.-G.; Chen Z. Org. Biomol. Chem. 2017, 15, 3396.
doi: 10.1039/c7ob00329c pmid: 28352912 |
[38] |
Roshandel S.; Lunn M. J.; Rasul G.; Ravinson D. S. M.; Suri S. C.; Prakash G. K. S. Org. Lett. 2019, 21, 6255.
doi: 10.1021/acs.orglett.9b02140 pmid: 31386386 |
[39] |
Yan W.; Liao T.; Tuguldur O.; Zhong C.; Petersen J. L.; Shi X. Chem.-Asian J. 2011, 6, 2720.
doi: 10.1002/asia.v6.10 |
[40] |
Bhagat U. K.; Kamaluddin; Peddinti R. K.; Tetrahedron Lett. 2017, 58, 298.
doi: 10.1016/j.tetlet.2016.11.125 |
[41] |
Bhagat U. K.; Peddinti R. K. J. Org. Chem. 2018, 83, 793.
doi: 10.1021/acs.joc.7b02793 |
[42] |
Tang S.; Yu J.; Shao Y.; Sun J. Org. Chem. Front. 2021, 8, 278.
doi: 10.1039/D0QO01060J |
[43] |
Bhagat U. K.; Kamaluddin; Peddinti R. K. Synthesis 2017, 49, 3985.
doi: 10.1055/s-0036-1589045 |
[44] |
Luo G.; Sun C.; Li Y.; Li X.; Zhao Z. RSC Adv. 2018, 8, 27610.
doi: 10.1039/C8RA04790A |
[45] |
Deng X.; Lei X.; Nie G.; Jia L.; Li Y.; Chen Y. J. Org. Chem. 2017, 82, 6163.
doi: 10.1021/acs.joc.7b00752 |
[46] |
Aruri H.; Singh U.; Kumar M.; Sharma S.; Aithagani S. K.; Gupta V. K.; Mignani S.; Vishwakarma R. A.; Singh P. P. J. Org. Chem. 2017, 82, 1000.
doi: 10.1021/acs.joc.6b02448 |
[47] |
Gupta S.; Chandna N.; Singh A. K.; Jain N. J. Org. Chem. 2018, 83, 3226.
doi: 10.1021/acs.joc.8b00107 pmid: 29463081 |
[48] |
Zhang C.; Zheng L.; Yan Q.; Hu Q.; Jia F.; Chen Y. ChemistrySelect 2018, 3, 10277.
doi: 10.1002/slct.v3.37 |
[49] |
Rajamanickam S.; Saraswat M.; Venkataramani S.; Patel B. K. Chem. Sci. 2021, 12, 15318.
doi: 10.1039/d1sc04365j pmid: 34976352 |
[50] |
Zhu L.-L.; Xu X.-Q.; Shi J.-W.; Chen B.-L.; Chen Z. J. Org. Chem. 2016, 81, 3568.
doi: 10.1021/acs.joc.6b00185 |
[51] |
Wei H.; Hu Q.; Ma Y.; Wei L.; Liu J.; Shi M.; Wang F. Asian J. Org. Chem. 2017, 6, 662.
doi: 10.1002/ajoc.v6.6 |
[52] |
Bhagat U. K.; Peddinti R. K. Synlett 2018, 29, 99.
doi: 10.1055/s-0036-1588567 |
[53] |
Zhu L.-L.; Tian L.; Cai B.; Liu G.; Zhang H.; Wang Y. Chem. Commun. 2020, 56, 2979.
doi: 10.1039/D0CC00601G |
[54] |
Zhu L.-L.; Tian L.; Sun K.; Li Y.; Liu G.; Cai B.; Zhang H.; Wang Y. J. Org. Chem. 2022, 87, 12963.
doi: 10.1021/acs.joc.2c01519 |
[55] |
Stivanin M. L.; Fernandes A. A. G.; da Silva A. F.; Okada Jr C. Y.; Jurberg I. D. Adv. Synth. Catal. 2020, 362, 1106.
doi: 10.1002/adsc.v362.5 |
[56] |
Man X. J. A. T. R. H.; Liu Y. C.; Li X. X.; Zhao Z. G. New J. Chem. 2019, 43, 14739.
doi: 10.1039/C9NJ03014J |
[57] |
Duan H.; Yan W.; Sengupta S.; Shi X. Bioorg. Med. Chem. Lett. 2009, 19, 3899.
doi: 10.1016/j.bmcl.2009.03.096 |
[58] |
Motornov V.; Latyshev G. V.; Kotovshchikov Y. N.; Lukashev N. V.; Beletskaya I. P. Adv. Synth. Catal. 2019, 361, 3306.
doi: 10.1002/adsc.v361.14 |
[59] |
Yan W.; Wang Q.; Chen Y.; Petersen J. L.; Shi X. Org. Lett. 2010, 12, 3308.
doi: 10.1021/ol101082v |
[60] |
Yan W.; Ye X.; Weise K.; Petersen J. L.; Shi X. Chem. Commun. 2012, 48, 3521.
doi: 10.1039/c2cc17522c |
[61] |
Reddy R. J.; Shankar A.; Waheed M.; Nanubolu J. B. Tetrahedron Lett. 2018, 59, 2014.
doi: 10.1016/j.tetlet.2018.04.023 |
[62] |
Desai S. P.; Zambri M. T.; Taylor M. S. J. Org. Chem. 2022, 87, 5385.
doi: 10.1021/acs.joc.2c00281 |
[63] |
Chen Y.; Zhou S.; Ma S.; Liu W.; Pan Z.; Shi X. Org. Biomol. Chem. 2013, 11, 8171.
doi: 10.1039/c3ob41774c |
[64] |
Duan S.; Chen Y.; Meng H.; Shan L.; Xu Z.-F.; Li C.-Y. Asian J. Org. Chem. 2021, 10, 224.
doi: 10.1002/ajoc.v10.1 |
[65] |
Zhang S.; Li J.; Xiao T.; Yang B.; Jiang Y. Molecules 2022, 27, 7567.
doi: 10.3390/molecules27217567 |
[66] |
Grimster N.; Zhang L.; Fokin V. V. J. Am. Chem. Soc. 2010, 132, 2510.
doi: 10.1021/ja910187s pmid: 20131915 |
[67] |
Wang T.; Tang Z.; Luo H.; Tian Y.; Xu M.; Lu Q.; Li B. Org. Lett. 2021, 23, 6293.
doi: 10.1021/acs.orglett.1c02087 pmid: 34346679 |
[68] |
Motornov V.; Beier P. Org. Lett. 2022, 24, 1958.
doi: 10.1021/acs.orglett.2c00359 |
[69] |
Motornov V.; Beier P. New J. Chem. 2022, 46, 14318.
doi: 10.1039/D2NJ02461F |
[1] | 曾如馨, 陈鹏. RNA结合蛋白的组学解析与功能探索★[J]. 化学学报, 2024, 82(1): 53-61. |
[2] | 李琛, 司笑, 李金波, 张艳. 小干扰RNA药物的化学修饰及递送系统★[J]. 化学学报, 2023, 81(9): 1240-1254. |
[3] | 于乐飞, 姚兴奇, 王剑波. 重氮化合物在高分子合成化学中的应用进展★[J]. 化学学报, 2023, 81(8): 1015-1029. |
[4] | 杨贯文, 伍广朋. 模块化双功能有机硼氮和硼磷催化体系的设计及其催化转化★[J]. 化学学报, 2023, 81(11): 1551-1565. |
[5] | 梁世硕, 康树森, 杨东, 胡建华. 锂金属负极界面修饰及其在硫化物全固态电池中的应用[J]. 化学学报, 2022, 80(9): 1264-1268. |
[6] | 解众舒, 薛中鑫, 许子文, 李倩, 王洪宇, 李维实. 石墨相氮化碳的共轭交联修饰及其对可见光催化产氢性能的影响[J]. 化学学报, 2022, 80(9): 1231-1237. |
[7] | 谢晨帆, 徐玉平, 高明亮, 徐忠宁, 江海龙. MOF基Pd单位点催化CO酯化制碳酸二甲酯[J]. 化学学报, 2022, 80(7): 867-873. |
[8] | 郑龙, 王丽佳, 唐勇. 吲哚-环丙烷的分子内开环反应※[J]. 化学学报, 2022, 80(3): 255-258. |
[9] | 周楚璐, 侯翠苹, 陈伟, 王立杰, 程建华. 开环易位聚合(ROMP)在星型聚合物合成中的应用进展[J]. 化学学报, 2022, 80(2): 229-236. |
[10] | 朱凤巧, 王文贵, 瞿旭东, 王守锋. 硫肽类抗生素化学半合成修饰研究进展[J]. 化学学报, 2022, 80(10): 1448-1462. |
[11] | 邓卓基, 欧阳溢凡, 敖运林, 蔡倩. 铜催化不对称去对称化分子内烯基C—N偶联反应[J]. 化学学报, 2021, 79(5): 649-652. |
[12] | 郭镇域, 周欢萍. 钙钛矿组分和结构设计及其发光二极管器件性能研究进展[J]. 化学学报, 2021, 79(3): 223-237. |
[13] | 张雅祺, 楚奇, 石勇, 高金索, 熊巍, 黄磊, 丁越. 双金属Ag-Ni-MOF-74的合成及低温CO催化还原NO性能研究[J]. 化学学报, 2021, 79(3): 361-368. |
[14] | 马明昊, 徐明, 刘思金. 氧化石墨烯的表面化学修饰及纳米-生物界面作用机理[J]. 化学学报, 2020, 78(9): 877-887. |
[15] | 江金辉, 朱云卿, 杜建忠. 开环聚合诱导自组装的挑战与展望[J]. 化学学报, 2020, 78(8): 719-724. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||