化学学报 ›› 2025, Vol. 83 ›› Issue (8): 868-877.DOI: 10.6023/A25040107 上一篇    下一篇

研究论文

氟掺杂诱导岩盐型高熵氧化物本征缺陷调控及其储锂性能优化

韦正兵a, 鲍梦凡a, 徐世彪a, 程怡a, 陈诗洁a, 林娜a,*(), 冒爱琴a,b,*()   

  1. a 安徽工业大学材料科学与工程学院 先进陶瓷研究中心 安徽马鞍山 243032
    b 安徽工业大学氢电高效转化与固态存储安徽省重点实验室 安徽马鞍山 243002
  • 投稿日期:2025-04-03 发布日期:2025-06-26
  • 通讯作者: 林娜, 冒爱琴
  • 基金资助:
    安徽省高校自然科学研究重点项目(2023AH051104); 氢电高效转化与固态存储安徽省重点实验室开放基金(ECSSHE2024KF05)

Fluorine Doping-Induced Intrinsic Defect Modulation in Rock-Salt-Type High-Entropy Oxide for Lithium Storage Performance Optimization

Zhengbing Weia, Mengfan Baoa, Shibiao Xua, Yi Chenga, Shijie Chena, Na Lina,*(), Aiqin Maoa,b,*()   

  1. a School of Materials Science and Engineering, Anhui University of Technology, Ma’anshan, Anhui 243032
    b Anhui Province Key Laboratory of Efficient Conversion and Solid-State Storage of Hydrogen & Electricity, Anhui University of Technology, Ma’anshan, Anhui 243002
  • Received:2025-04-03 Published:2025-06-26
  • Contact: Na Lin, Aiqin Mao
  • Supported by:
    University Natural Science Research Project of Anhui Province(2023AH051104); Open Project of Anhui Province Key Laboratory of Efficient Conversion and Solid-State Storage of Hydrogen & Electricity(ECSSHE2024KF05)

高熵氧化物因其灵活的组分设计和多组元之间的协同效应, 被认为是锂离子电池最具有潜力的负极材料之一. 然而其较低的本征电子/离子电导率严重限制其在锂离子电池存储中的动力学行为, 高熵氧化物负极材料存在倍率性能低、循环稳定性差的现状. 本研究以岩盐型(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O为研究基础, 采用溶液燃烧法, 通过高电负性阴离子F掺杂策略, 调控晶格畸变和氧空位等本征缺陷, 成功制备了具有单一岩盐结构的F掺杂(Co0.2Cu0.2Mg0.2- Ni0.2Zn0.2)O1-xFx (x=0, 0.05, 0.1)高熵氧化物锂离子电池负极材料. 测试结果表明: (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O0.95F0.05负极材料展示了卓越的倍率性能和优异的循环稳定性, 200 mA•g-1下循环150圈后比容量高达389.5 mAh•g-1; 电流密度至1000 mA•g-1循环150圈后比容量仍高达233.4 mAh•g-1, 较未掺杂的样品提升56%, 且容量保持率依然高达93.1%. 其优异的电化学性能归因于: 适量的F掺杂提升了电极材料的比表面积和表面Cu含量, 导致晶格畸变降低和氧空位增加, 优化的质构、适度的晶格畸变和氧空位, 不仅提供了更多的电化学反应活性位点和传输通道, 而且还强化了表面赝电容特性, 极大促进了电子和离子的传输动力学.

关键词: 锂离子电池负极材料, 岩盐型高熵氧化物, 阴离子掺杂, 晶格畸变, 氧空位

High-entropy oxides (HEOs) have emerged as one of the most promising anode materials for lithium-ion batteries due to their flexible compositional design and synergistic effects among multiple components. However, their practical application is severely hindered by inferior intrinsic electronic/ionic conductivity, which leads to poor rate capability and cycling stability in lithium storage systems. In this study, we developed a fluorine anion doping strategy to regulate intrinsic defects including lattice distortion and oxygen vacancies in rock-salt type (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O through solution combustion synthesis. This approach successfully fabricated single-phase F-doped (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O1-xFx (x=0, 0.05, 0.1) HEO anode materials. Electrochemical evaluations demonstrate that the (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O0.95F0.05 anode exhibits exceptional rate performance and cycling stability, delivering a high specific capacity of 389.5 mAh•g-1 after 150 cycles at 200 mA•g-1. Even under high current density of 1000 mA•g-1, it maintains 233.4 mAh•g-1 after 150 cycles with 93.1% capacity retention, representing a 56% improvement compared to undoped counterparts. The enhanced electrochemical performance originates from optimized material characteristics induced by appropriate F doping: increased specific surface area, elevated surface Cu content, reduced lattice distortion, and controlled oxygen vacancies. These structural modifications not only provide additional active sites and ion transport pathways but also enhance surface pseudocapacitive behavior, thereby significantly improving both electronic and ionic transport kinetics.

Key words: lithium-ion battery anode material, rock salt-type high-entropy oxide, anion doping, lattice distortion, oxygen vacancy