化学学报 ›› 2025, Vol. 83 ›› Issue (11): 1309-1316.DOI: 10.6023/A25070250 上一篇    下一篇

研究论文

基于可编程注射泵系统的梯度黏弹性水凝胶制备法

杨皓琛, 马颖超, 李自远*(), 张隽佶*()   

  1. 华东理工大学化学与分子工程学院 精细化工研究所 材料生物学与动态化学前沿科学中心 费林加诺贝尔奖科学家联合研究中心 先进材料重点实验室与精密化学与分子工程国际联合研究实验室 上海 200237
  • 投稿日期:2025-07-09 发布日期:2025-08-21
  • 通讯作者: 李自远, 张隽佶
  • 作者简介:

    “中国青年化学家”专辑.

  • 基金资助:
    国家重点研发计划(2023YFF0722600); 国家自然科学基金(22122803); 国家自然科学基金(22378121); 国家自然科学基金(22105070); 国家自然科学基金(32350018); 上海市科学技术委员会(24DX1400200); 中央高校基本科研业务费专项资金(222201717003); 上海市自然科学基金项目(23ZR1479500); 上海市自然科学基金项目(23JC1401700); 上海帆船项目(20YF1410300)

Preparation of Gradient Viscoelastic Hydrogel Based on Programmable Syringe Pump System

Yang Haochen, Ma Yingchao, Li Ziyuan*(), Zhang Junji*()   

  1. Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237
  • Received:2025-07-09 Published:2025-08-21
  • Contact: Li Ziyuan, Zhang Junji
  • About author:

    For the VSI "Rising Stars in Chemistry".

  • Supported by:
    National Key R&D Program of China(2023YFF0722600); National Natural Science Foundation of China(22122803); National Natural Science Foundation of China(22378121); National Natural Science Foundation of China(22105070); National Natural Science Foundation of China(32350018); Science and Technology Commission of Shanghai Municipality(24DX1400200); Fundamental Research Funds for the Central Universities(222201717003); Shanghai Natural Science Foundation(23ZR1479500); Shanghai Natural Science Foundation(23JC1401700); Shanghai Sailing Program(20YF1410300)

细胞外基质(ECM)的力学异质性对细胞行为具有指导作用. 梯度水凝胶能够在体外模拟ECM的力学异质性. 然而, 当前的梯度水凝胶制备策略, 如光掩模聚合、扩散法, 存在操作复杂、适用范围窄及生物相容性不足等局限. 此研究以氧化透明质酸(oxi-HA)和明胶(gelatin)为原料, 通过可编程注射泵系统(PSPS)在600 μm的尺度内构建了黏弹性梯度水凝胶(GoHG). 水凝胶具有连续的刚度与应力松弛时间梯度和良好的细胞相容性. 此外, 成纤维细胞(NIH-3T3)和成肌细胞(C2C12)在不同黏弹性区域表现出显著的铺展行为差异, 证实了细胞对基质力学梯度的特异性响应. 该技术改善了当前梯度水凝胶构建方法的局限性, 为研究细胞-ECM力学互作及组织工程应用提供了高效、通用的平台.

关键词: 可编程注射泵系统, 黏弹性, 梯度水凝胶, 细胞铺展

The mechanical properties of the extracellular matrix (ECM), including stiffness and stress relaxation, play an instructive role in regulating cellular behaviors. Given the inherent heterogeneity of tissue viscoelasticity in vivo, the precise influence of viscoelastic variations on cellular behaviors remains incompletely understood. To study these mechanobiological responses in vitro, gradient hydrogels have been developed to mimic the mechanical heterogeneity of native ECM. However, current fabrication strategies, including photomask polymerization and diffusion-based methods, face several limitations, such as complex operation, narrow material applicability, and compromised biocompatibility due to harsh reaction conditions. To address this challenge, we developed a programmable syringe pump system (PSPS) comprising three syringe units to fabricate a gradient viscoelastic hydrogel (GoHG) at a 600 μm scale. The hydrogel was synthesized through dynamic imine crosslinking between oxidized hyaluronic acid (oxi-HA) and gelatin, with precise spatial control over viscoelastic properties achieved by independently modulating the flow rates of individual injection units. This strategy enabled precise control over hydrogel composition, resulting in continuous stiffness gradients (19~47 kPa) and stress relaxation gradients (6~62 s) while maintaining excellent cytocompatibility (>95%). The results on the effect of viscoelastic gradient on cell spreading behavior indicate that different cell types exhibited distinct responses to the viscoelastic gradient. Fibroblasts (NIH-3T3) displayed enhanced spreading behavior in regions with higher stiffness (28.5 kPa) and slower stress relaxation (34.7 s), whereas myoblasts (C2C12) showed larger spreading area in areas with lower stiffness (23.6 kPa) and faster stress relaxation (30.0 s), highlighting cellular specificity to mechanical cues. These findings underscore the importance of viscoelasticity as a critical regulator of cell behavior. In conclusion, the PSPS-based fabrication method offers significant advantages, including simplicity, scalability, and broad material compatibility, making it a versatile platform for mechanobiology research. Furthermore, this approach advancing our understanding of cell-ECM mechanical interactions and shows great potential for tissue engineering applications, where mimicking native ECM mechanics is essential for guiding cell function and tissue regeneration.

Key words: programmable syringe pump system, viscoelasticity, gradient hydrogel, cell spreading