研究亮点

基于Diels-Alder生物正交反应的蛋白质快速位点特异性标记方法

  • 王玥 ,
  • 叶新山
展开
  • 北京大学医学部天然药物及仿生药物国家重点实验室 北京 100191

收稿日期: 2012-09-05

  网络出版日期: 2012-09-28

基金资助

项目受科技部“973”计划(No. 2012CB822100)和“重大新药创制”科技重大专项(No. 2012ZX09502001-001)资助.

Rapid Site-Specific Protein Labeling Based on Diels-Alder Bioorthogonal Reactions

  • Wang Yue ,
  • Ye Xinshan
Expand
  • State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191

Received date: 2012-09-05

  Online published: 2012-09-28

Supported by

Project supported by the National Basic Research Program of China (973 Program) (No. 2012CB822100) and the National Major Scientific and Technological Special Project for “Significant New Drugs Development” (No. 2012ZX09502001-001).

摘要

蛋白质的位点特异性修饰近年来取得了重要进展. 本文对该领域新近发展的利用高张力烯烃或炔烃与四嗪类化合物的Diels-Alder生物正交反应, 通过基因编码的方式在蛋白质中位点特异性地插入其中一个组分, 从而实现蛋白质的快速荧光标记进行了介绍.

本文引用格式

王玥 , 叶新山 . 基于Diels-Alder生物正交反应的蛋白质快速位点特异性标记方法[J]. 化学学报, 2012 , 70(21) : 2208 -2212 . DOI: 10.6023/A12090629

Abstract

In recent years, many achievements have been made in site-specific protein modifications. This review highlights the latest advances on protein labeling, which utilizes the inverse electron-demand Diels-Alder bioorthogonal reactions of highly strained alkenes or alkynes and tetrazines, by genetically encoding unnatural amino acids containing one of these functionalities into the specific sites of proteins, leading to the rapid fluorescence labeling of cellular proteins.

参考文献

[1] Heim, R.; Prasher, D. C.; Tsien, R. Y. Proc. Natl. Acad. Sci. U. S. A. 1994, 91, 12501.
[2] Keppler, A.; Gendreizig, S.; Gronemeyer, T.; Pick, H.; Vogel, H.; Johnsson, K. Nat. Biotech. 2003, 21, 86.
[3] (a) Fernandez-Suarez, M.; Baruah, H.; Martinez-Hernandez, L.; Xie, K. T.; Baskin, J. M.; Bertozzi, C. R.; Ting, A. Y. Nat. Biotech. 2007, 25, 1483; (b) Yao, J. Z.; Uttamapinant, C.; Poloukhtine, A.; Baskin, J. M.; Codelli, J. A.; Sletten, E. M.; Bertozzi, C. R.; Popik, V. V.; Ting, A. Y. J. Am. Chem. Soc. 2012, 134, 3720.
[4] Griffin, B. A.; Adams, S. R.; Tsien, R. Y. Science 1998, 281, 269.
[5] Xie, J.; Schultz, P. G. Methods 2005, 36, 227.
[6] Agard, N. J.; Baskin, J. M.; Prescher, J. A.; Lo, A.; Bertozzi, C. R. ACS Chem. Biol. 2006, 1, 644.
[7] Jewett, J. C.; Sletten, E. M.; Bertozzi, C. R. J. Am. Chem. Soc. 2010, 132, 3688.
[8] (a) Nguyen, D. P.; Elliott, T.; Holt, M.; Muir, T. W.; Chin, J. W. J. Am. Chem. Soc. 2011, 133, 11418; (b) Wang, Y.; Song, W.; Hu, W. J.; Lin, Q. Angew. Chem., Int. Ed. 2009, 48, 5330.
[9] (a) Devaraj, N. K.; Weissleder, R.; Hilderbrand, S. A. Bioconjugate Chem. 2008, 19, 2297; (b) Blackman, M. L.; Royzen, M.; Fox, J. M. J. Am. Chem. Soc. 2008, 130, 13518; (c) Chen, W.; Wang, D.; Dai, C.; Hamelberg, D.; Wang, B. Chem. Commun. 2012, 48, 1736.
[10] Lang, K.; Davis, L.; Torres-Kolbus, J.; Chou, C.; Deiters, A.; Chin, J. W. Nat. Chem. 2012, 4, 298.
[11] Seitchik, J. L.; Peeler, J. C.; Taylor, M. T.; Blackman, M. L.; Rhoads, T. W.; Cooley, R. B.; Refakis, C.; Fox, J. M.; Mehl, R. A. J. Am. Chem. Soc. 2012, 134, 2898.
[12] Plass, T.; Milles, S.; Koehler, C.; Szymański, J.; Mueller, R.; Wieβler, M.; Schultz, C.; Lemke, E. A. Angew. Chem., Int. Ed. 2012, 51, 4166.
[13] Lang, K.; Davis, L.; Wallace, S.; Mahesh, M.; Cox, D. J.; Blackman, M. L.; Fox, J. M.; Chin, J. W. J. Am. Chem. Soc. 2012, 134, 10317.
[14] Rossin, R.; Renart Verkerk, P.; van den Bosch, S. M.; Vulders, R. C. M.; Verel, I.; Lub, J.; Robillard, M. S. Angew. Chem., Int. Ed. 2010, 49, 3375.
[15] Yu, Z.; Pan, Y.; Wang, Z.; Wang, J.; Lin, Q. Angew. Chem., Int. Ed. 2012, doi: 10.1002/anie.201205352.
文章导航

/