综述

碗形胶体颗粒/阵列薄膜的制备及性能研究进展

  • 郭阳光 ,
  • 杨穆 ,
  • 吴强
展开
  • 北京科技大学材料科学与工程学院 北京 100083

收稿日期: 2012-12-13

  网络出版日期: 2013-03-01

基金资助

项目受国家自然科学基金(Nos. 51073022, 50836001)资助.

Progress in Preparation and Properties of the Bowl-like Particles and Arrays

  • Guo Yangguang ,
  • Yang Mu ,
  • Wu Qiang
Expand
  • School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083

Received date: 2012-12-13

  Online published: 2013-03-01

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 51073022, 50836001).

摘要

随着科学技术和应用需求的快速发展, 对胶体颗粒形貌、尺寸和组分提出了越来越高的要求, 简单组成的球形颗粒已经难以满足需求. 微/纳米碗形胶体颗粒/阵列薄膜由于具有比表面积大、结构对称性下降等特点, 在纳米反应器、药物运载、高灵敏度传感器、数据储存、自组装等方面有着广阔的应用前景, 其研究、开发和应用已经成为微/纳米材料研究领域的热点. 概述了近十年来国内外碗形胶体颗粒/碗形阵列薄膜的研究进展, 按照无机和金属、聚合物两大类分别对碗形材料的各种制备方法进行了详细介绍, 目前主要有单层胶体晶体模板法、碗形阵列薄膜模板法、诱导生长法、异形颗粒法、中空微球内陷法、种子聚合法、溶剂处理法等; 按照材质种类, 分别对TiO2, ZnO, FexOy, 贵金属、聚合物等碗形颗粒/阵列薄膜的结构与性能研究进行了概述, 指出了其潜在的应用领域; 并进一步展望了该领域未来的发展趋势.

本文引用格式

郭阳光 , 杨穆 , 吴强 . 碗形胶体颗粒/阵列薄膜的制备及性能研究进展[J]. 化学学报, 2013 , 71(05) : 693 -699 . DOI: 10.6023/A12121048

Abstract

Nonspherical particles include various morphologies, such as snow-shaped, mushroom-shaped, dumbbell-shaped, H2O molecules-shaped, bowl-like. Their unique structures not only provide novel assembly units, but also bring many special physical and chemical properties. During the last ten years, micro/nanometer bowl-like particles and arrays have been given widely attention. Due to their large specific surface area, low structure symmetry, the bowl-like particles and bowl-like arrays have unique optical, magnetic properties and provide broad potential applications in nano-reactors, drug delivery, high-sensitivity sensor, data storage, assembly units, solar cell and other fields. This review gives a systematic overview on the recent advances in the fabrication and properties of the bowl-like particles and bowl-like arrays. First, various synthesis routes are introduced in detail, including the monolayer colloidal crystal template approach, the bowl-like array template approach, induced growth, heterodimeric particle approach, hollow microspheres invagination, seed polymerization, solvent-treatment approach. Next, the relationship between the structure and the property of the bowl-like particles and arrays are investigated according to the types of material. The diverse applications of the obtained materials are also summarized, for example photo catalysis, solar cells, micro/nanometer devices, sensors, and so on. Finally, the advantages and disadvantages of various synthesized methods are discussed and an outlook on future developments in this area is also provided.

参考文献

[1] Shen, H. R.; El-aasser, M. S.; Vanderhoff, J. W. J. Polym. Sci. Polym. Chem. 1990, 28, 653.
[2] Park, J. G.; Forster, J. D.; Dufresne, E. R. J. Am. Chem. Soc. 2010, 132, 5960.
[3] Park, J. G.; Forster, J. D.; Dufresne, E. R. Langmuir 2009, 25, 8903.
[4] Deng, W.; Wang, M. Y.; Chen, G.; Kan, C. Y. Eur. Polym. J.2010, 46, 1210.
[5] Wang, Z.; Qian, X. F.; Yin, J.; Zhu, Z. K. Langmuir 2004, 20, 3441.
[6] Heiz, U.; Vanolli, F.; Sanchez, A.; Schneider, W. D. J. Am. Chem. Soc. 1998, 120, 9668.
[7] Ye, J.; Dorpe, P. V.; Roy, W. V.; Lodewijks, K.; Vlaminck, I. D.; Maes, G.; Borghs, G. J. Phys. Chem. C 2009, 113, 3110.
[8] Grabar, K. C.; Smith, P. C.; Musick, M. D.; Davis, J. A.; Walter, D. G.; Jackson, M. A.; Guthrie, A. P.; Natan, M. J. J. Am. Chem. Soc. 1996, 118, 1148.
[9] Ma, G. H.; Su, Z. G. Polymer Microsphere Material, Chemical Industry Press, Beijing, 2005, pp. 63~67. (马光辉, 苏志国, 高分子微球材料, 化学工业出版社, 北京, 2005, pp. 63~67.)
[10] Love, J. C.; Gates, B. D.; Wolfe, D. B.; Paul, K. E.; Whitesides, G. M. Nano Lett. 2002, 2, 891.
[11] Kim, J. W.; Larsen, R. J.; Weitz, D. A. J. Am. Chem. Soc. 2006, 128, 14374.
[12] Yin, Y. D.; Lu, Y.; Gates, B.; Xia, Y. N. J. Am. Chem. Soc. 2001, 123, 8718.
[13] Jeong, U.; Im, S. H.; Pedro, H. C.; Camargo, P. H. K.; Kim, J. H.; Xia, Y. N. Langmuir 2007, 23, 10968.
[14] Wang, Z. G.; Shang, H.; Lee, G. U. Langmuir 2006, 22, 6723.
[15] Chen, S. Y.; Yen, Y. T.; Chen, Y. Y.; Hsu, C. S.; Chueh, Y. L.; Chen, L. J. RSC Adv. 2012, 2, 1314.
[16] Lee, J. H.; Leu, I. C.; Chung, Y. W.; Hon, M. H. J. Nanosci.Nanotechnol. 2008, 8, 4436.
[17] Yu, J.; Geng, C.; Zeng, Y. M.; Yan, Q. F.; Wang, X. Q.; Shen, D. Z.ACS Macro. Lett. 2012, 1, 62.
[18] Fu, G. F.; Vary, P. S.; Lin, C. T. J. Phys. Chem. B 2005, 109, 8889.
[19] Zhang, J. H.; Li, Y. F.; Zhang, X. M.; Yang, B. Adv. Mater. 2010, 22, 4249.
[20] Yang, S. K.; Lei, Y. Nanoscale 2011, 3, 2768.
[21] Ye, X. Z.; Qi, L. M. Nano Today 2011, 6, 608
[22] Liu, J. Q.; Maaroof, A. I.; Wieczorek, L.; Cortie, M. B. Adv. Mater. 2005, 17, 1276.
[23] Liu, J.; Cankurtaran, B.; McCredie, G.; Ford, M. J.; Wieczorek, L.; Cortie, M. B. Nanotechnology 2005, 16, 3023.
[24] Xu, M. J.; Lu, N.; Xu, H. B.; Qi, D. P.; Wang, Y. D.; Chi, L. F.Langmuir 2009, 25, 11216.
[25] Charnay, C.; Lee, A.; Man, S. Q.; Moran, C. E.; Radloff, C.; Bradley, R. K.; Halas, N. J. J. Phys. Chem. B 2003, 107, 7327.
[26] Wang, X. D.; Graugnard, E.; King, J. S.; Wang, Z. L.; Summers, C. J. Nano Lett. 2004, 4, 2223.
[27] Wang, X. D.; Lao, C. S.; Graugnard, E.; Summers, C. J.; Wang, Z. L. Nano Lett. 2005, 5, 1784.
[28] Liu, J. B.; Zhu, M. W.; Zhan, P.; Dong, H.; Dong, Y. E.; Qu, X. T.; Nie, Y. H.; Wang, Z. L. Nanotechnology 2006, 17, 4191.
[29] Ye, J.; Dorpe, P. V.; Roy, W. V.; Borghs, G.; Maes, G. Langmuir 2009, 25, 1822.
[30] Ding, T.; Song, K.; Yang, G. Q.; Tung, C. Macromol. Rapid Commun. 2012, 33, 1562.
[31] Cao, B. Q.; Cai, W. P.; Sun, F. Q.; Li, Y.; Lei, Y.; Zhang, L. D.Chem. Commun. 2004, 1604.
[32] Duan, G. T.; Cai, W. P.; Li, Y.; Li, Z. G.; Cao, B. Q.; Luo, Y. Y. J. Phys. Chem. B 2006, 110, 7184.
[33] Sun, F. Q.; Cai, W. P.; Li, Y.; Cao, B. Q.; Lu, F.; Duan, G. T.; Zhang, L. D. Adv. Mater. 2005, 16, 1116.
[34] Xia, X. H.; Tu, J. P.; Zhang, J.; Wang, X. L.; Zhao, X. B. ACS Appl. Mater. Interfaces 2010, 2, 186.
[35] Li, Y.; Li, C. C.; Cho, S. O.; Duan, G. T.; Cai, W. P. Langmuir 2007, 23, 9802.
[36] Sun, F. Q.; Yu, J. C. Angew. Chem. Int. Ed. 2007, 46, 773.
[37] Hong, G. S.; Li, C.; Qi, L. M. Adv. Funct. Mater. 2010, 20, 3774.
[38] Li, C.; Hong, G. S.; Yu, H.; Qi, L. M. Chem. Mater. 2010, 22, 3206.
[39] Lang, X. Z.; Qiu, T.; Zhang, W. J.; Yin, Y.; Chu, P. K. J. Phys. Chem. C 2011, 115, 24328.
[40] Zhao, A. W.; Liang, J. B.; Xiong, Z. L.; Qian, Y. T. Chem. Lett. 2007, 36, 432.
[41] Wang, Y. F.; Chen, X. L.; Zhang, J. H.; Sun, Z. Q.; Li, Y. F.; Zhang, K.; Yang, B. Colloids Surf. A 2008, 329, 184.
[42] Krishna, K. S.; Mansoori, U.; Selvi, N. R.; Eswaramoorthy, M. Angew. Chem. Int. Ed. 2007, 46, 5962.
[43] Jagadeesan, D.; Mansoori, U.; Mandal, P.; Sundaresan, A.; Eswaramoorthy, M. Angew. Chem. 2008, 120, 7799.
[44] Zhou, W.; Lin, L. J.; Zhao, D. Y.; Guo, L. J. Am. Chem. Soc.2011, 133, 8389.
[45] Zhao, N. N.; Li, L. S.; Huang, T.; Qi, L. M. Nanoscale 2010, 2, 2418.
[46] Ridelman, Y.; Singh, G.; Popovitz-Biro, R.; Wolf, S. G.; Das, S.; Klajn, R. Small 2012, 8, 654.
[47] Zoldesi, C. I.; Walree, C. A.; Imhof, A. Langmuir 2006, 22, 4343.
[48] Zhang, H. J.; Ye, F.; Xu, H. F.; Liu, L. M.; Guo, H. F. Mater. Lett. 2010, 64, 1473.
[49] Jin, Q.; Zheng, M. T.; Wu, Y. J.; Xie, C. L.; Xiao, Y.; Liu, Y. L. J Mater. Sci. 2011, 46,7639.
[50] Omer-Mizrahi, M.; Margel, S. J. Polym. Sci. Polym. Chem. 2007, 45, 4612.
[51] Liu, B.; Zhang, C. L.; Liu, J. G.; Quand, X. Z.; Yang, Z. Z. Chem. Commun. 2009, 3871.
[52] Ge, X. P.; Wang, M. Z.; Yuan, Q.; Wang, H.; Ge, X. W. Chem. Commun. 2009, 2765.
[53] Im, S. H.; Jeong, U.; Xia, Y. N. Nat. Mater. 2005, 4, 671.
[54] Yin, W.; Yates, M. Z. Langmuir 2008, 24, 701.
[55] Tanaka, T.; Komatsu, Y.; Fujibayashi, T.; Minami, H.; Okubo, M.Langmuir 2010, 26, 3848.
[56] Wang, Y.; Guo, B. H.; Wan, X.; Xu, J.; Wang, X.; Zhang, Y. P.Polymer 2009, 50, 3361.
[57] Chen, J. Y; Chao, D. M.; Lu, X. F.; Zhang, W. J.; Manohar, S. K. Macromol. Rapid Commun. 2006, 27, 771.
[58] Li, X.; Peng, J.; Kang, J. H.; Choy, J. H.; Steinhart, M.; Knoll, W.; Kim, D. H. Soft Matter 2008, 4, 515.
[59] Lan, D.; Wang, Y. R.; Du, X. L.; Mei, Z. X.; Xue, Q. K.; Wang, K. Cryst. Growth Des. 2008, 8, 2912.
[60] Zhang, Y. M.; Lan, D.; Wang, Y. R.; Cao, H.; Zhao, Y. P. J. ColloidInterface Sci. 2010, 351, 288.
[61] Li, Z. G.; Cai, W. P.; Duan, G. T.; Zeng, H. B.; Liu, P. S. J. Nanosci. Nanotechnol. 2009, 9, 2970.
[62] Mou, F. Z.; Xu, L. L.; Ma, H. R.; Guan, J. G.; Chenb, D. R.;Wang, S. H. Nanoscale 2012, 4, 4650.
[63] Yuan, Y. F.; Xia, X. H.; Wu, J. B.; Yang, J. L.; Chen, Y. B.; Guo,S. Y. Electrochem. Commun. 2010, 12, 890.
[64] John, N. S.; Selvi, N. R.; Mathur, M.; Govindarajan, R.; Kulkarni, G. U. J. Phys. Chem. B 2006, 110, 22975.
[65] Ye, J.; Lagae, L.; Maes, G.;Borghs, G.; Dorpe, P. V. Opt. Express. 2009, 17, 23765.
[66] Rao, Y. Y.; Tao, Q.; An, M.; Rong, C. H.; Dong, J.; Dai, Y. R.; Qian, W. P. Langmuir 2011, 27, 13308.
[67] Hosein, I. D.; LiddellIan, C. M. Langmuir 2007, 23, 8810.
[68] Guan, G. J.; Zhang, Z. P.; Wang, Z. Y.; Liu, B. H.; Gao, D. M.; Xie, C. G. Adv. Mater. 2007, 19, 2370.
文章导航

/