薄膜结构及形貌对钙钛矿电池性能的影响
收稿日期: 2014-10-17
网络出版日期: 2014-12-25
基金资助
项目受国家973计划(No. 2011CBA00700)、国家863计划(No. 2011AA050510)和国家自然科学基金(Nos. 21103197, 21273242)资助.
Influence of Structure and Morphology of Perovskite Films on the Performance of Perovskite Solar Cells
Received date: 2014-10-17
Online published: 2014-12-25
Supported by
Project supported by the National Basic Research Program of China (No. 2011CBA00700), the National High Technology Research and Development Program of China (No. 2011AA050510), and the National Natural Science Foundation of China (Nos. 21103197, 21273242).
采用液相连续沉积法制备了有机/无机杂化钙钛矿太阳电池, 并研究了不同形貌钙钛矿(CH3NH3PbI3)光活性层对太阳电池性能的影响. 实验结果表明在连续沉积法中PbI2的结构对CH3NH3PbI3层的形貌具有重要的影响, PbI2薄膜中适当的孔洞结构有利于其与CH3NH3I充分反应形成CH3NH3PbI3层. 致密的PbI2层造成PbI2的转化不完全, 导致CH3NH3PbI3颗粒较小, 吸收较弱, 影响电池的短路电流. 而CH3NH3PbI3颗粒过大会引起CH3NH3PbI3薄膜孔洞产生, 造成电池的开路电压下降. 通过对电池制备工艺的优化获得了13.5%的最佳光电转换效率.
邵志鹏 , 潘旭 , 张旭辉 , 叶加久 , 朱梁正 , 李毅 , 马艳梅 , 黄阳 , 朱俊 , 胡林华 , 孔凡太 , 戴松元 . 薄膜结构及形貌对钙钛矿电池性能的影响[J]. 化学学报, 2015 , 73(3) : 267 -271 . DOI: 10.6023/A14100721
Perovskite solar cells based on the inorganic/organic hybrid perovskite have attracted increasing attention over the past 3 years. Many studies have been done in this area. Controling the morphology of the perovskite film is an effective way to improve the photoelectric conversion efficiency of the devices. In our reserch, we studied the influence of structure and morphology of perovskite films on the performance of the organic-inorganic hybrid perovskite solar cells which prepared by a sequential deposition method. Mesoporous TiO2 scaffold were introduced as electron collecting layer. Lead iodide (PbI2) was then spin cast on the TiO2 scaffold. The PbI2 subsequently transformed into the perovskite (CH3NH3PbI3) by dipping the TiO2/PbI2 film into a solution of CH3NH3I. We studied the difference between the PbI2 film with or without drying under room temperature after spin-coating. Through drying under room temperature, larger pores formed in the PbI2 film. While without drying under room temperature, smaller and shallower pores formed in the PbI2 film. The results show that larger pores in PbI2 film leads to more complete transformation of PbI2 to CH3NH3PbI3 and larger CH3NH3PbI3 particles. CH3NH3PbI3 films were prepared with three different processes: (a) direct dipping the PbI2 film with smaller pores into the CH3NH3I solution; (b) direct dipping the PbI2 with larger pores into the CH3NH3I solution; (c) dipping the PbI2 with larger pores into the CH3NH3I solution after pre-wetting.The resulting CH3NH3PbI3 films were studied with SEM, UV-vis absorption spectrum and XRD. The particles size of the CH3NH3PbI3 are 150, 250 and 350 nm for process (a), (b) and (c) respectively. CH3NH3PbI3 films fabricated through process (a) show insufficient absorption due to the insufficient transformation of the PbI2. The pre-wetting procedure leads to slower reaction result in larger CH3NH3PbI3 particle size. Devices with proper size of CH3NH3PbI3 particles show the highest photoelectric conversion efficiency. An efficiency of 13.5% was achieved with a Jsc of 17.8 mA/cm2, a Voc of 1.05 V and a FF of 72.5%.
Key words: organic/inorganic hybrid; perovskite; preparation process; morphology; solar cell
[1] (a) Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Science 2012, 338, 643;
(b) Gratzel, M. Nat. Mater. 2014, 13, 838.
[2] (a) Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050;
(b) Wu, C. G.; Chiang, C. H.; Tseng, Z. L. J. Mater. Chem. A 2014, 2, 15897;
(c) Qin, P.; Paek, S.; Dar, M. I.; Pellet, N.; Ko, J.; Gratzel, M.; Nazeeruddin, M. K. J. Am. Chem. Soc. 2014, 136, 8516;
(d) Cai, B.; Xing, Y.; Yang, Z.; Zhang, W. H.; Qiu, J. Energy Environ. Sci. 2013, 6, 1480.
[3] Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Nat. Mater. 2014, 13, 897.
[4] Snaith, H. J. J. Phys. Chem. Lett. 2013, 4, 3623.
[5] (a) Yang, Z. S.; Yang, L. G.; Wu, G.; Wang, M.; Chen, H. Z. Acta Chim. Sinica 2011, 69, 627 (杨志胜, 杨立功, 吴刚, 汪茫, 陈红征, 化学学报, 2011, 69, 627);
(b) Yang, Z. S.; Yang, L. G.; Wu, G.; Wang, M.; Tang, B. Z.; Chen, H. Z. Acta Chim. Sinica 2008, 66, 1611 (杨志胜, 杨立功, 吴刚, 汪茫, 唐本忠, 陈红征, 化学学报, 2008, 66, 1611).
[6] (a) Malinkiewicz, O.; Yella, A.; Lee, Y. H.; Espallargas, G. M.; Graetzel, M.; Nazeeruddin, M. K.; Bolink, H. J. Nat. Photonics 2014, 8, 128;
(b) Etgar, L.; Gao, P.; Xue, Z.; Peng, Q.; Chandiran, A. K.; Liu, B.; Nazeeruddin, M. K.; Graetzel, M. J. Am. Chem. Soc. 2012, 134, 17396.
[7] (a) Yin, W. J.; Shi, T.; Yan, Y. Adv. Mater. 2014, 26, 4653;
(b) Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Science 2013, 342, 341;
(c) Xing, G.; Mathews, N.; Sun, S.; Lim, S. S.; Lam, Y. M.; Gratzel, M.; Mhaisalkar, S.; Sum, T. C. Science 2013, 342, 344.
[8] Sun, S.; Salim, T.; Mathews, N.; Duchamp, M.; Boothroyd, C.; Xing, G.; Sum, T. C.; Lam, Y. M. Energy Environ. Sci. 2014, 7, 399.
[9] (a) Kim, H. S.; Lee, C.-R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry Baker, R.; Yum, J. H.; Moser, J. E.; Graetzel, M.; Park, N. G. Sci. Rep. 2012, 2, 591;
(b) Chen, Q.; Zhou, H.; Hong, Z.; Luo, S.; Duan, H. S.; Wang, H. H.; Liu, Y.; Li, G.; Yang, Y. J. Am. Chem. Soc. 2014, 136, 622;
(c) He, M.; Zheng, D.; Wang, M.; Lin, C.; Lin, Z. J. Mater. Chem. A 2014, 2, 5994.
[10] Burschka, J.; Pellet, N.; Moon, S. J.; Humphry Baker, R.; Gao, P.; Nazeeruddin, M. K.; Graetzel, M. Nature 2013, 499, 316.
[11] Im, J. H.; Jang, I. H.; Pellet, N.; Grätzel, M.; Park, N. G. Nat. Nano 2014, 9, 927.
[12] Xiao, M.; Huang, F.; Huang, W.; Dkhissi, Y.; Zhu, Y.; Etheridge, J.; Gray Weale, A.; Bach, U.; Cheng, Y. B.; Spiccia, L. Angew. Chem., Int. Ed. 2014, 126, 1.
[13] (a) Wojciechowski, K.; Saliba, M.; Leijtens, T.; Abate, A.; Snaith, H. J. Energy Environ. Sci. 2014, 7, 1142;
(b) Wang, J. T.; Ball, J. M.; Barea, E. M.; Abate, A.; Alexander Webber, J. A.; Huang, J.; Saliba, M.; Mora-Sero, I.; Bisquert, J.; Snaith, H. J.; Nicholas, R. J. Nano Lett. 2013, 14, 724.
[14] (a) Zhu, Z.; Bai, Y.; Zhang, T.; Liu, Z.; Long, X.; Wei, Z.; Wang, Z.; Zhang, L.; Wang, J.; Yan, F.; Yang, S. Angew. Chem., Int. Ed. 2014, 126, 1;
(b) Wang, K. C.; Jeng, J. Y.; Shen, P. S.; Chang, Y. C.; Diau, E. W.; Tsai, C. H.; Chao, T. Y.; Hsu, H. C.; Lin, P. Y.; Chen, P.; Guo, T. F.; Wen, T. C. Sci. Rep. 2014, 4, 4756;
(c) Wang, K. C.; Shen, P. S.; Li, M. H.; Chen, S.; Lin, M. W.; Chen, P.; Guo, T. F. ACS Appl. Mater. Interfaces 2014, 6, 11851.
[15] (a) Wang, Q.; Dong, Q.; Xiao, Z.; Yuan, Y.; Huang, J. Energy Environ. Sci. 2014, 7, 2359;
(b) Seo, J.; Park, S.; Chan Kim, Y.; Jeon, N. J.; Noh, J. H.; Yoon, S. C.; Seok, S. I. Energy Environ. Sci. 2014, 7, 2642;
(c) Liu, D.; Kelly, T. L. Nat. Photonics 2013, 8, 133;
(d) Ryu, S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Yang, S.; Seo, J. W.; Seok, S. I. Energy Environ. Sci. 2014, 7, 2614.
[16] Liu, M.; Johnston, M. B.; Snaith, H. J. Nature 2013, 501, 395.
[17] Shi, J.; Luo, Y.; Wei, H.; Luo, J.; Dong, J.; Lv, S.; Xiao, J.; Xu, Y.; Zhu, L.; Xu, X.; Wu, H.; Li, D.; Meng, Q. ACS Appl. Mater. Interfaces 2014, 6, 9711.
[18] Chen, Q.; Zhou, H.; Song, T. B.; Luo, S.; Hong, Z.; Duan, H. S.; Dou, L.; Liu, Y.; Yang, Y. Nano Lett. 2014, 14, 4158.
[19] Kim, J. Y.; Kim, S. H.; Lee, H. H.; Lee, K.; Ma, W.; Gong, X.; Heeger, A. J. Adv. Mater. 2006, 18, 572.
[20] Baikie, T.; Fang, Y.; Kadro, J. M.; Schreyer, M.; Wei, F.; Mhaisalkar, S. G.; Graetzel, M.; White, T. J. J. Mater. Chem. A 2013, 1, 5628.
21] Jeon, N. J.; Lee, J.; Noh, J. H.; Nazeeruddin, M. K.; Gratzel, M.; Seok, S. I. J. Am. Chem. Soc. 2013, 135, 19087.
/
| 〈 |
|
〉 |