柔性链在调控有机半导体光电性能中的应用
收稿日期: 2015-05-03
网络出版日期: 2015-06-02
基金资助
项目受国家重点基础研究发展计划项目(2014CB648300)、国家自然科学基金(21422402, 20904024, 51173081, 61136003)、教育部新世纪优秀人才(NCET-13-0872)、教育部博士点基金博导类项目(20133223110008)、教育部创新团队(IRT1148)、江苏省自然科学基金(BK20140060, BK20130037, BM2012010)、江苏省有机电子与信息显示协同创新中心、江苏高校优势学科建设工程资助项目(PAPD)、江苏省六大人才高峰项目(2012XCL035)和江苏省“青蓝工程”项目资助.
Effects of Flexible Side Chains on Modulating the Functional Properties of Organic Semiconductors for Optoelectronics
Received date: 2015-05-03
Online published: 2015-06-02
Supported by
Project supported by the National Key Basic Research Program of China (973 Program, 2014CB648300), the National Natural Science Foundation of China (21422402, 20904024, 51173081, 61136003), the Natural Science Foundation of Jiangsu Province (BM2012010, BK20140060, BK20130037), Program for New Century Excellent Talents in University (NCET-13-0872), Specialized Research Fund for the Doctoral Program of Higher Education (20133223110008), the Ministry of Education of China (IRT1148), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Six Talent Plan (2012XCL035) and Qing Lan Project of Jiangsu Province.
桑明 , 曹四振 , 赖文勇 , 黄维 . 柔性链在调控有机半导体光电性能中的应用[J]. 化学学报, 2015 , 73(8) : 770 -782 . DOI: 10.6023/A15050305
In the past decades, great progress has been made in solution-processed organic semiconductor materials for optoelectronics. Tremendous efforts have been focused on the design of new π-conjugated backbones. In contrast, the effects of flexible chains, which are usually used as solubilizing groups, on the functional properties have been less investigated. In this report, we highlight the effects of flexible chains in organic semiconductors, including the influences of types, length, density, orientation, branching points. This would shed light to further understand the roles of flexible chains on modulating the functional properties of organic semiconductors for optoelectronic devices and thus facilitate the rational design and development of high-performance organic optoelectronic materials.
[1] Wöhrle, D.; Meissner, D. Adv. Mater. 1991, 3, 129.
[2] Günes, S.; Neugebauer, H.; Sariciftci, N. S. Chem. Rev. 2007, 107, 1324.
[3] Fu, Y.; Wang, F.; Zhang, Y.; Fang, X.; Lai, W.; Huang, W. Acta Chim. Sinica 2014, 72, 158. (付钰, 王芳, 张燕, 方旭, 赖文勇, 黄维, 化学学报, 2014, 72, 158.)
[4] Horowitz, G. Adv. Mater. 1998, 10, 365.
[5] Zaumseil, J.; Sirringhaus, H. Chem. Rev. 2007, 107, 1296.
[6] Chen, S.; Deng, L.; Xie, J.; Peng, L.; Xie, L.; Fan, Q.; Huang, W. Adv. Mater. 2010, 22, 5227.
[7] Xie, L.-H.; Yin, C.-R.; Lai, W.-Y.; Fan, Q.-L.; Huang, W. Prog. Polym. Sci. 2012, 37, 1192.
[8] Tao, Y.; Yuan, K.; Chen, T.; Xu, P.; Li, H.; Chen, R.; Zheng, C.; Zhang, L.; Huang, W. Adv. Mater. 2014, 26, 7931.
[9] Xu, H.; Chen, R.; Sun, Q.; Lai, W.-Y.; Su, Q.; Huang, W.; Liu, X. Chem. Soc. Rev. 2014, 43, 3259.
[10] Sirringhaus, H.; Tessler, N.; Friend, R. H. Science 1998, 280, 1741.
[11] Sirringhaus, H.; Kawase, T.; Friend, R. H.; Shimoda, T.; Inbasekaran, M.; Wu, W.; Woo, E. P. Science 2000, 290, 2123.
[12] Yan, H.; Chen, Z.; Zheng, Y.; Newman, C.; Quinn, J. R.; Dotz, F.; Kastler, M.; Facchetti, A. Nature 2009, 457, 679.
[13] Huang, W.; Yu, W.-L.; Meng, H.; Pei, J.; Li, S. F. Y. Chem. Mater. 1998, 10, 3340.
[14] Yu, W.-L.; Meng, H.; Pei, J.; Huang, W. J. Am. Chem. Soc. 1998, 120, 11808.
[15] Yu, W.-L.; Meng, H.; Pei, J.; Huang, W.; Li, Y.; Heeger, A. J. Macromolecules 1998, 31, 4838.
[16] He, P.; Li, Z. F.; Hou, Q. F.; Wang, Y. L. Chin. J. Org. Chem. 2013, 33, 288. (和平, 李在房, 侯秋飞, 王艳玲, 有机化学, 2013, 33, 288.)
[17] Ye, H. Y.; Li, W.; Li, W. S. Chin. J. Org. Chem. 2012, 32, 266. (叶怀英, 李文, 李维实, 有机化学, 2012, 32, 266.)
[18] Guo, X.; Baumgarten, M.; Müllen, K. Prog. Polym. Sci. 2013, 38, 1832.
[19] Jiang, W.; Li, Y.; Wang, Z. Chem. Soc. Rev. 2013, 42, 6113.
[20] Li, H.; Kim, F. S.; Ren, G.; Jenekhe, S. A. J. Am. Chem. Soc. 2013, 135, 14920.
[21] Mori, T.; Nishimura, T.; Yamamoto, T.; Doi, I.; Miyazaki, E.; Osaka, I.; Takimiya, K. J. Am. Chem. Soc. 2013, 135, 13900.
[22] Pron, A.; Leclerc, M. Prog. Polym. Sci. 2013, 38, 1815.
[23] Kim, J.-H.; Song, C. E.; Kim, B.; Kang, I.-N.; Shin, W. S.; Hwang, D.-H. Chem. Mater. 2014, 26, 1234.
[24] Liu, Z.; Zhang, G.; Cai, Z.; Chen, X.; Luo, H.; Li, Y.; Wang, J.; Zhang, D. Adv. Mater. 2014, 26, 6965.
[25] Sun, B.; Hong, W.; Yan, Z.; Aziz, H.; Li, Y. Adv. Mater. 2014, 26, 2636.
[26] Venkateshvaran, D.; Nikolka, M.; Sadhanala, A.; Lemaur, V.; Zelazny, M.; Kepa, M.; Hurhangee, M.; Kronemeijer, A. J.; Pecunia, V.; Nasrallah, I. Nature 2014, 515, 384.
[27] Ye, L.; Zhang, S.; Huo, L.; Zhang, M.; Hou, J. Acc. Chem. Res. 2014, 47, 1595.
[28] Zhang, W.; Liu, Y.; Yu, G. Adv. Mater. 2014, 26, 6802.
[29] Szarko, J. M.; Guo, J.; Liang, Y.; Lee, B.; Rolczynski, B. S.; Strzalka, J.; Xu, T.; Loser, S.; Marks, T. J.; Yu, L.; Chen, L. Adv. Mater. 2010, 22, 5468.
[30] Deng, Y.; Chen, Y.; Liu, J.; Liu, L.; Tian, H.; Xie, Z.; Geng, Y.; Wang, F. ACS Appl. Mater. Interfaces 2013, 5, 5741.
[31] Sung, A.; Ling, M. M.; Tang, M. L.; Bao, Z.; Locklin, J. Chem. Mater. 2007, 19, 2342.
[32] Han, A.; Dutta, G. K.; Lee, J.; Lee, H. R.; Lee, S. M.; Ahn, H.; Shin, T. J.; Oh, J. H.; Yang, C. Adv. Funct. Mater. 2015, 25, 247.
[33] Bao, Z.; Lovinger, A. J. Chem. Mater. 1999, 11, 2607.
[34] Lai, W.-Y.; Chen, Q. Q.; He, Q. Y.; Fan, Q. L.; Huang, W. Chem. Commun. 2006, 1959.
[35] Lai, W.-Y.; Zhu, R.; Fan, Q. L.; Hou, L. T.; Cao, Y.; Huang, W. Macromolecules 2006, 39, 3707.
[36] Zhu, R.; Lai, W.-Y.; Wang, H.-Y.; Yu, N.; Wei, W.; Peng, B.; Huang, W.; Hou, L.-T.; Peng, J.-B.; Cao, Y. Appl. Phys. Lett. 2007, 90, 141909.
[37] Lai, W.-Y.; He, Q. Y.; Zhu, R.; Chen, Q. Q.; Huang, W. Adv. Funct. Mater. 2008, 18, 265.
[38] Liu, F.; Lai, W.-Y.; Tang, C.; Wu, H. B.; Chen, Q. Q.; Peng, B.; Wei, W.; Huang, W.; Cao, Y. Macromol. Rapid Commun. 2008, 29, 659.
[39] Lai, W.-Y.; Xia, R.; He, Q. Y.; Levermore, P. A.; Huang, W.; Bradley, D. D. Adv. Mater. 2009, 21, 355.
[40] Xia, R.; Lai, W.-Y.; Levermore, P. A.; Huang, W.; Bradley, D. D. Adv. Funct. Mater. 2009, 19, 2844.
[41] Lai, W.-Y.; Liu, D.; Huang, W. Sci. China Chem. 2010, 53, 2472.
[42] Lai, W.-Y.; Xia, R.; Bradley, D. D.; Huang, W. Chem. Eur. J. 2010, 16, 8471.
[43] Lai, W.-Y.; Liu, D.; Huang, W. Macromol. Chem. Phys. 2011, 212, 445.
[44] Zhao, L.; Jiu, Y.; Wang, J.; Zhang, X.; Lai, W.-Y.; Huang, W. Acta Chim. Sinica 2013, 71, 1248. (赵玲玲, 酒元达, 王建云, 张新稳, 赖文勇, 黄维, 化学学报, 2013, 71, 1248.)
[45] Wang, F.; Li, X. C.; Lai, W.-Y.; Chen, Y.; Huang, W.; Wudl, F. Org. Lett. 2014, 16, 2942.
[46] Wang, L.; Liang, B.; Huang, F.; Peng, J.; Cao, Y. Appl. Phys. Lett. 2006, 89, 151115.
[47] Huang, F.; Wu, H.; Cao, Y. Chem. Soc. Rev. 2010, 39, 2500.
[48] Na, S.-I.; Kim, T.-S.; Oh, S.-H.; Kim, J.; Kim, S.-S.; Kim, D.-Y. Appl. Phys. Lett. 2010, 97, 223305.
[49] Seo, J. H.; Gutacker, A.; Sun, Y.; Wu, H.; Huang, F.; Cao, Y.; Scherf, U.; Heeger, A. J.; Bazan, G. C. J. Am. Chem. Soc. 2011, 133, 8416.
[50] Duan, C.; Zhang, K.; Zhong, C.; Huang, F.; Cao, Y. Chem. Soc. Rev. 2013, 42, 9071.
[51] He, Z.; Wu, H.; Cao, Y. Adv. Mater. 2014, 26, 1006.
[52] He, Z.; Zhong, C.; Huang, X.; Wong, W. Y.; Wu, H.; Chen, L.; Su, S.; Cao, Y. Adv. Mater. 2011, 23, 4636.
[53] He, Z.; Zhong, C.; Su, S.; Xu, M.; Wu, H.; Cao, Y. Nat. Photon. 2012, 6, 591.
[54] Xu, W.; Zhang, X.; Hu, Q.; Zhao, L.; Teng, X.; Lai, W.-Y.; Xia, R.; Nelson, J.; Huang, W.; Bradley, D. D. Org. Electron. 2014, 15, 1244.
[55] Xu, W.-D.; Lai, W.-Y.; Hu, Q.; Teng, X.-Y.; Zhang, X.-W.; Huang, W. Polym. Chem. 2014, 5, 2942.
[56] Xu, W.; Kan, Z.; Ye, T.; Zhao, L.; Lai, W.-Y.; Xia, R.; Lanzani, G.; Keivanidis, P. E.; Huang, W. ACS Appl. Mater. Interfaces 2015, 7, 5038.
[57] Henson, Z. B.; Zhang, Y.; Nguyen, T.-Q.; Seo, J. H.; Bazan, G. C. J. Am. Chem. Soc. 2013, 135, 4163.
[58] Mei, J.; Kim, D. H.; Ayzner, A. L.; Toney, M. F.; Bao, Z. J. Am. Chem. Soc. 2011, 133, 20130.
[59] Kim, H.-J.; Kim, T.; Lee, M. Acc. Chem. Res. 2011, 44, 72.
[60] Mei, J.; Graham, K. R.; Stalder, R.; Tiwari, S. P.; Cheun, H.; Shim, J.; Yoshio, M.; Nuckolls, C.; Kippelen, B.; Castellano, R. K.; Reynolds, J. R. Chem. Mater. 2011, 23, 2285.
[61] Kanimozhi, C.; Yaacobi-Gross, N.; Chou, K. W.; Amassian, A.; Anthopoulos, T. D.; Patil, S. J. Am. Chem. Soc. 2012, 134, 16532.
[62] Kim, R.; Kang, B.; Sin, D. H.; Choi, H. H.; Kwon, S.-K.; Kim, Y.-H.; Cho, K. Chem. Commun. 2015, 51, 1524.
[63] Geng, Y.; Wei, Q.; Hashimoto, K.; Tajima, K. Chem. Mater. 2011, 23, 4257.
[64] Tada, A.; Geng, Y.; Wei, Q.; Hashimoto, K.; Tajima, K. Nat. Mater. 2011, 10, 450.
[65] Ma, J.; Hashimoto, K.; Koganezawa, T.; Tajima, K. J. Am. Chem. Soc. 2013, 135, 9644.
[66] Babel, A.; Jenekhe, S. A. Synth. Met. 2005, 148, 169.
[67] Friedel, B.; McNeill, C. R.; Greenham, N. C. Chem. Mater. 2010, 22, 3389.
[68] Lee, H. S.; Cho, J. H.; Cho, K.; Park, Y. D. J. Phys. Chem. C. 2013, 117, 11764.
[69] Osaka, I.; Zhang, R.; Sauve, G.; Smilgies, D.-M.; Kowalewski, T.; McCullough, R. D. J. Am. Chem. Soc. 2009, 131, 2521.
[70] Zhang, J.; Tan, L.; Jiang, W.; Hu, W.; Wang, Z. J. Mater. Chem. C 2013, 1, 3200.
[71] Yiu, A. T.; Beaujuge, P. M.; Lee, O. P.; Woo, C. H.; Toney, M. F.; Frechet, J. M. J. J. Am. Chem. Soc. 2012, 134, 2180.
[72] Kline, R. J.; DeLongchamp, D. M.; Fischer, D. A.; Lin, E. K.; Richter, L. J.; Chabinyc, M. L.; Toney, M. F.; Heeney, M.; McCulloch, I. Macromolecules 2007, 40, 7960.
[73] McCulloch, I.; Heeney, M.; Bailey, C.; Genevicius, K.; MacDonald, I.; Shkunov, M.; Sparrowe, D.; Tierney, S.; Wagner, R.; Zhang, W.; Chabinyc, M. L.; Kline, R. J.; McGehee, M. D.; Toney, M. F. Nat. Mater. 2006, 5, 328.
[74] Ong, B. S.; Wu, Y.; Liu, P.; Gardner, S. J. Am. Chem. Soc. 2004, 126, 3378.
[75] Guo, X.; Ortiz, R. P.; Zheng, Y.; Kim, M.-G.; Zhang, S.; Hu, Y.; Lu, G.; Facchetti, A.; Marks, T. J. J. Am. Chem. Soc. 2011, 133, 13685.
[76] Osaka, I.; Abe, T.; Shimawaki, M.; Koganezawa, T.; Takimiya, K. ACS Macro Lett. 2012, 1, 437.
[77] Osaka, I.; Kakara, T.; Takemura, N.; Koganezawa, T.; Takimiya, K. J. Am. Chem. Soc. 2013, 135, 8834.
[78] Li, Z.; Zhang, Y.; Tsang, S.-W.; Du, X.; Zhou, J.; Tao, Y.; Ding, J. J. Phys. Chem. C 2011, 115, 18002.
[79] Wu, Q.; Wang, M.; Qiao, X.; Xiong, Y.; Huang, Y.; Gao, X.; Li, H. Macromolecules 2013, 46, 3887.
[80] Fei, Z.; Pattanasattayavong, P.; Han, Y.; Schroeder, B. C.; Yan, F.; Kline, R. J.; Anthopoulos, T. D.; Heeney, M. J. Am. Chem. Soc. 2014, 136, 15154.
[81] Mondal, R.; Miyaki, N.; Becerril, H. A.; Norton, J. E.; Parmer, J.; Mayer, A. C.; Tang, M. L.; Bredas, J.-L.; McGehee, M. D.; Bao, Z. Chem. Mater. 2009, 21, 3618.
[82] Mondal, R.; Ko, S.; Verploegen, E.; Becerril, H. A.; Toney, M. F.; Bao, Z. J. Mater. Chem. 2011, 21, 1537.
[83] Speros, J. C.; Martinez, H.; Paulsen, B. D.; White, S. P.; Bonifas, A. D.; Goff, P. C.; Frisbie, C. D.; Hillmyer, M. A. Macromolecules 2013, 46, 5184.
[84] Wu, Q.; Ren, S.; Wang, M.; Qiao, X.; Li, H.; Gao, X.; Yang, X.; Zhu, D. Adv. Funct. Mater. 2013, 23, 2277.
[85] Lei, T.; Dou, J.-H.; Pei, J. Adv. Mater. 2012, 24, 6457.
[86] Coropceanu, V.; Cornil, J.; da Silva, D. A.; Olivier, Y.; Silbey, R.; Bredas, J.-L. Chem. Rev. 2007, 107, 926.
[87] Zhang, F.; Hu, Y.; Schuettfort, T.; Di, C. A.; Gao, X.; McNeill, C. R.; Thomsen, L.; Mannsfeld, S. C.; Yuan, W.; Sirringhaus, H.; Zhu, D. J. Am. Chem. Soc. 2013, 135, 2338.
[88] Lee, J.; Han, A. R.; Yu, H.; Shin, T. J.; Yang, C.; Oh, J. H. J. Am. Chem. Soc. 2013, 135, 9540.
[89] Meager, I.; Ashraf, R. S.; Mollinger, S.; Schroeder, B. C.; Bronstein, H.; Beatrup, D.; Vezie, M. S.; Kirchartz, T.; Salleo, A.; Nelson, J.; McCulloch, I. J. Am. Chem. Soc. 2013, 135, 11537.
/
〈 |
|
〉 |