研究展望

二氧化碳与不饱和烃的还原羧化反应

  • 张帅 ,
  • 李雪冬 ,
  • 何良年
展开
  • 元素有机化学国家重点实验室 天津化学化工协同创新中心 南开大学 天津 300071

收稿日期: 2015-09-26

  网络出版日期: 2015-11-13

基金资助

项目受国家自然科学基金(Nos. 21472103, 21421001)、教育部博士点基金(No. 20130031110013)和教育部创新团队(No. IRT13022)资助.

Reductive Carboxylation of Unsaturated Hydrocarbons with Carbon Dioxide

  • Zhang Shuai ,
  • Li Xuedong ,
  • He Liang-Nian
Expand
  • State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071

Received date: 2015-09-26

  Online published: 2015-11-13

Supported by

Project supported by the National Natural Sciences Foundation of China (Nos. 21472103, 21421001), the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20130031110013), the MOE Innovation Team (No. IRT13022) of China.

摘要

过渡金属催化CO2参与的不饱和烃还原羧化反应是合成羧酸及丙烯酸类化合物的重要途径, 具有重要的研究价值和工业应用潜力.过渡金属试剂与不饱和烃、CO2生成稳定的金属杂环内酯或金属羧酸盐.还原剂能够与金属杂环内酯或金属羧酸盐发生转金属作用, 重新生成活泼催化剂, 从而实现催化剂的循环利用.本文总结了还原剂, 包括有机金属试剂、硅烷、硼烷、金属粉末、甲醇和氢气等在不饱和烃与CO2的还原羧化反应中的应用, 并着重描述其反应特点和反应机理.

本文引用格式

张帅 , 李雪冬 , 何良年 . 二氧化碳与不饱和烃的还原羧化反应[J]. 化学学报, 2016 , 74(1) : 17 -23 . DOI: 10.6023/A15090631

Abstract

Transition metal-catalyzed reductive carboxylation of unsaturated hydrocarbons with CO2 is a promising and potential strategy, offering an excellent alternative access to carboxylic acids/acrylic acids. The active transition metal species could react with unsaturated hydrocarbons and CO2 to generate the stable metallalactones or carboxylic salts. The transmetalation between reductants and metallalactones/carboxylic salts regenerates the active catalytic species. As a result, the reductive carboxylation is able to run in a catalytic mode rather than stoichiometric version. Organometal species, silanes/boranes, metal powder, methanol and hydrogens have been developed as reducing reagents in reductive carboxylation with CO2. In this perspective, the latest advances on the transition metal-catalyzed reductive carboxylation are summarized, with particular focus on the application of reductants and related reaction mechanism at a molecular level.

参考文献

[1] Yang, Z.-Z.; He, L.-N.; Gao, J. Energy Environ. Sci. 2012, 5, 6602.
[2] Yang, Z.-Z.; Zhao, Y.-N.; He, L.-N. RSC Adv. Rev. 2011, 1, 545.
[3] Liu, Q.; Wu, L.; Jackstell, R.; Beller, M. Nat. Commun. 2015, 6, 5933.
[4] Saito, S.; Nakagawa, S.; Koizumi, T.; Hirayama, K.; Yamamoto, Y. J. Org. Chem. 1999, 64, 3975.
[5] Takimoto, M.; Shimizu, K.; Mori, M. Org. Lett. 2001, 3, 3345.
[6] Takimoto, M.; Mori, M. J. Am. Chem. Soc. 2002, 124, 10008.
[7] Takimoto, M.; Nakamura, Y.; Kimura, K.; Mori, M. J. Am. Chem. Soc. 2004, 126, 5956.
[8] Shimizu, K.; Sato, Y.; Mori, M. Org. Lett. 2005, 7, 195.
[9] Li, S.; Yuan, W.; Ma, S. Angew. Chem., Int. Ed. 2011, 50, 2578.
[10] Williams, C. M.; Johnson, J. B.; Rovis, T. J. Am. Chem. Soc. 2008, 130, 14936.
[11] Yuan, R.; Lin, Z. Organometallics 2014, 33, 7147.
[12] Takimoto, M.; Hou, Z. Chem. Eur. J. 2013, 19, 11439.
[13] Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2008, 130, 15254.
[14] Takaya, S. J.; Iwasawa, N. Org. Lett. 2011, 13, 1698.
[15] Suh, H.-W.; Guard, L. M.; Hazari, N. Chem. Sci. 2014, 5, 3859.
[16] Greenhalgh, M. D.; Thomas, S. P. J. Am. Chem. Soc. 2012, 134, 11900.
[17] Fujihara, T.; Xu, T.; Semba, K.; Terao, J.; Tsuji, Y. Angew. Chem. Int. Ed. 2011, 50, 523.
[18] Ohmiya, H.; Tanabe, M.; Sawamura, M. Org. Lett. 2011, 13, 1086.
[19] Fujihara, T.; Tani, Y.; Semba, K.; Terao, J.; Tsuji, Y. Angew. Chem., Int. Ed. 2012, 51, 11487.
[20] Zhang, L.; Cheng, J.; Carry, B.; Hou, Z. J. Am. Chem. Soc. 2012, 134, 14314.
[21] Correa, A.; Martin, R. J. Am. Chem. Soc. 2009, 131, 15974.
[22] Fujihara, T.; Nogi, K.; Xu, T.; Terao, J.; Tsuji, Y. J. Am. Chem. Soc. 2012, 134, 9106.
[23] Hung, T.-V.; Olafs, D. ACS Catal. 2013, 3, 2417.
[24] Leon, T.; Correa, A.; Martin, R. J. Am. Chem. Soc. 2013, 135, 1221.
[25] Correa, A.; Leon, T.; Martin, R. J. Am. Chem. Soc. 2014, 136, 1062.
[26] Liu, Y.; Cornella, J.; Martin, R. J. Am. Chem. Soc. 2014, 136, 11212.
[27] Moragas, T.; Cornella, J.; Martin, R. J. Am. Chem. Soc. 2014, 136, 17702.
[28] Sayyed, F. B.; Tsuji, Y.; Sakaki, S. Chem. Commun. 2013, 49, 10715.
[29] Sayyed, F. B.; Sakaki, S. Chem. Commun. 2014, 50, 13026.
[30] Wang, X.; Liu, Y.; Martin, R. J. Am. Chem. Soc. 2015, 137, 6476.
[31] Fujihara, T.; Horimoto, Y.; Mizoe, T.; Sayyed, F. B.; Tani, Y.; Terao, J.; Sakaki, S.; Tsuji, Y. Org. Lett. 2014, 16, 4960.
[32] Ostapowicz, T. G.; Schmitz, M.; Krystof, M.; Klankermayer, J.; Leitner, W. Angew. Chem., Int. Ed. 2013, 52, 12119.
[33] Wu, L.; Liu, Q.; Fleischer, I.; Wu, L.; Liu, Q.; Fleischer, I.; Jackstell, R.; Beller, M. Nat. Commun. 2014, 4, 4091.
[34] Wang, W.; Yan, Z. J.; Yuan, Y.; Sun, F. X.; Zhao, M.; Ren, H.; Zhu, G. S. Acta Chim. Sinica 2014, 72, 557. (王维, 闫卓君, 元野, 孙福兴, 赵明, 任浩, 朱广山, 化学学报, 2014, 72, 557.)
[35] Gao, M. Y.; Jiang, D.; Sun, D. K.; Hou, B.; Li, D. B. Acta Chim. Sinica 2014, 72, 1092. (高梦语, 姜东, 孙德魁, 侯博, 李德宝, 化学学报, 2014, 72, 1092.)
[36] Li, F.; Suo, Q.; Hong, H.; Zhu, N.; Wang, Y.; Han, L. Chin. J. Org. Chem. 2014, 34, 2172. (李发旺, 索全伶, 洪海龙, 竺宁, 王亚琦, 韩利民, 有机化学, 2014, 34, 2172.)
[37] Zheng, G. D.; Yan, Y.; Cao, X. Z.; Xu, J. Q.; Gao, S.; Tong, S. L.; Gao, D. Acta Chim. Sinica 1995, 53, 299. (郑国栋, 阎雁, 曹锡章, 徐吉庆, 高赛, 佟珊玲, 高德, 化学学报, 1995, 53, 299.)
[38] He, M.; Sun, Y.; Han, B. Angew. Chem. Int. Ed. 2013, 52, 9620.
[39] Lu, X. B.; Darensbourg, D. J. Chem. Soc. Rev. 2012, 41, 1462.
[40] Sakakura, T.; Choi, J.; Yasuda, H. Chem. Rev. 2007, 107, 2365.
[41] He, L.-N. Carbon Dioxide Chemistry, Science Publisher, Beijing, 2013. (二氧化碳化学, 科学出版社, 北京, 2013.)
[42] He, L.-N.; Wang, J.-Q.; Wang, J.-L. Pure Appl. Chem. 2009, 81, 2069.
[43] Liu, A.-H.; Ma, R.; Song, C.; Yu, A.; He, L.-N. Angew. Chem., Int. Ed. 2012, 52, 11306.

文章导航

/