直链烷烃近红外光谱的温度效应与应用研究
收稿日期: 2015-10-17
网络出版日期: 2015-12-23
基金资助
项目受国家自然科学基金(No.21475068)和教育部创新团队(IRT13022)资助.
Effect of Temperature on Near-infrared Spectra of n-Alkanes
Received date: 2015-10-17
Online published: 2015-12-23
Supported by
Project supported by the National Natural Science Foundation of China (No. 21475068) and MOE Innovation Team (IRT13022).
近红外光谱的温度效应已得到关注,在结构分析和定量分析方面得到了尝试.以直链烷烃为例,对烷烃有机体系近红外光谱的温度效应进行了研究.采集了20~60℃范围内五种直链烷烃(正己烷到正癸烷)及其混合物的近红外光谱并进行了对比分析,仅发现某些谱峰的强度随温度发生微小变化.采用交替三线性分解算法对光谱数据进行了解析,考察了光谱的特征以及随温度和结构的变化.结果表明,链端C2H5和链中CH2基团的光谱受温度的影响不同,但其光谱信号的强度与温度之间都具有良好的线性关系,可根据光谱预测体系的温度;两种基团的光谱信号强度与烷烃分子的碳数或两种基团在分子中相对含量都具有良好的线性关系,可用于直链烷烃混合物组成的估算.
关键词: 近红外光谱; 温度效应; 直链烷烃; 交替三线性分解; 定量光谱温度关系(QSTR)
祁丽华 , 蔡文生 , 邵学广 . 直链烷烃近红外光谱的温度效应与应用研究[J]. 化学学报, 2016 , 74(2) : 172 -178 . DOI: 10.6023/A15100664
Effect of temperature on near-infrared (NIR) spectra has been studied and applied to structural and quantitative analyses. To investigate the effect of temperature on NIR spectra of alkyl organic system, n-alkanes were studied in this work. NIR spectra of pure n-alkanes (hexane to decane), binary (hexane and octane) and ternary (octane, nonane and decane) mixtures were measured. In the experiments, temperature was controlled to change from 60 to 20℃ with a step of ca. 5℃. Comparing the spectra at different temperatures, only a little difference in peak intensity of some bands can be found. Therefore, alternating trilinear decomposition (ATLD) algorithm was adopted to analyze the three-order data matrix. The results show that two spectral loadings are obtained because the influence of temperature on the spectra of terminal ethyl (C2H5) groups differs from that of mid-chain methylene (CH2) groups. Furthermore, the temperature scores of CH2 and C2H5 groups decrease linearly with temperature, implying that the temperature effect can be quantitatively described by a quantitative spectra-temperature relationship (QSTR) model. The QSTR model provides an efficient way to predict the temperature of n-alkane solutions. Good linearity also exists between sample scores and carbon number or the relative content of CH2 and C2H5 groups in the molecules of the n-alkanes. Linear models between the two scores and the relative content of CH2 and C2H5 groups are obtained, respectively, using the least square fitting of the score and the relative contents. The model can be used for prediction of the relative content of CH2 and C2H5 groups in mixtures, which can further be used to estimate the composition of the mixtures. Furthermore, the relationship between the scores and the carbon atom numbers is modeled using multivariate linear regression (MLR). The composition of n-alkane mixtures can also be estimated through the predicted carbon number using the MLR model. These models are validated by binary and ternary mixtures of the n-alkanes. It was indicated that the relative contents of CH2 and C2H5 groups or the carbon atom number can be predicted using the models. Therefore, a new way for quantitative estimation of the composition in n-alkane mixtures was developed using the temperature effect of the near-infrared spectra.
[1] Lu, W.-Z.; Yuan, H.-F.; Xu, G.-T. Modern Near Infrared Spectroscopy Analytical Technology, 2nd ed., China Petrochemical Press, Beijing, 2010, pp. 13~32. (陆婉珍, 袁洪福, 徐广通, 现代近红外光谱分析技术(第二版), 中国石化出版社, 北京, 2010, pp. 13~32.)
[2] Du, W.; Chen, Z.-P.; Zhong, L.-J.; Wang, S.-X.; Yu, R.-Q.; Nordon, A.; Littlejohn, D.; Holden, M. Anal. Chim. Acta 2011, 690, 64.
[3] Zhuang, X.-L.; Xiang, Y.-H.; Qiang, H.; Zhang, Z.-Y.; Zou, M.-Q.; Zhang, X.-F. Spectrosc. Spect. Anal. 2010, 30, 933(in Chinese). (庄小丽, 相玉红, 强洪, 张卓勇, 邹明强, 张孝芳, 光谱学与光谱分析, 2010, 30, 933.)
[4] Zhang, X.; Du, Y.-P.; Tong, P.-J.; Li, W.; Iqbal, J.; Wu, T.; Hu, H.-L.; Zhang, W.-B. Chemom. Intell. Lab. Syst. 2014, 134, 58.
[5] Zhang, W.-J.; Liu, R.; Xu, K.-X. Acta Chim. Sinica 2012, 70, 1281(in Chinese). (张婉洁, 刘蓉, 徐可欣, 化学学报, 2012, 70, 1281.)
[6] Shao, X.-G.; Ning, Y.; Liu, F.-X.; Li, J.-H.; Cai, W.-S. Acta Chim. Sinica 2012, 70, 2109(in Chinese). (邵学广, 宁宇, 刘凤霞, 李积慧, 蔡文生, 化学学报, 2012, 70, 2109.)
[7] Wlufer, F.; Kok, W. T.; Smilde, A. K. Anal. Chem. 1998, 70, 1761.
[8] Ozaki, Y.; Liu, Y.; Noda, I. Appl. Spectrosc. 1997, 51, 526.
[9] Liu, Y.-L.; Ozaki, Y. J. Phys. Chem. 1996, 100, 7326.
[10] Wuttke, R.; Hofmann, H.; Nettels, D.; Borgia, M. B.; Mittal, J.; Best, R. B.; Schuler, B. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 5213.
[11] Liu, Z.-G.; Zhao, L.; Zhou, Z.; Sun, T.-Z.; Zu, Y.-G. Scanning 2012, 34, 302.
[12] Jing, Y.; Wu, P.-Y. Cellulose 2013, 20, 67.
[13] Segtnan, V. H.; Sasic, S.; Isaksson, T.; Ozaki, Y. Anal. Chem. 2001, 73, 3153.
[14] Sasic, S.; Segtnan, V. H.; Ozaki, Y. J. Phys. Chem. A 2002, 106, 760.
[15] Shao, X.-G.; Kang, J.; Cai, W.-S. Talanta 2010, 82, 1017.
[16] Kang, J.; Cai, W.-S.; Shao, X.-G. Talanta 2011, 85, 420.
[17] Shan, R.-F.; Zhao, Y.; Fan, M.-L.; Liu, X.-W.; Cai, W.-S.; Shao, X. G. Talanta 2015, 131, 170.
[18] Tosi, C.; Pinto, A. Spectrochim. Acta 1972, 28A, 585.
[19] Mullins, O. C.; Joshi, N. B.; Groenzin, H.; Daigle, T.; Crowell, C.; Joseph, M. T.; Jamaluddin, A. Appl. Spectrosc. 2000, 54, 624.
[20] Garcia, G.; Trenzado, J. L.; Alcalde, R.; Rodriguez-Delgado, A.; Atihan, M.; Aparicio, S. J. Phys. Chem. B 2014, 118, 11310.
[21] Tojo, J.; Canosa, J.; Rodriguez, A.; Ortega, J.; Dieppa, R. J. Chem. Eng. Data 2004, 49, 86.
[22] Shao, X.-G.; Leung, A. K. M.; Chau, F. T. Acc. Chem. Res. 2003, 36, 276.
[23] Shan, R.-F.; Cai, W.-S.; Shao, X.-G. Chemom. Intell. Lab. Syst. 2014, 131, 31.
[24] Ni, Y.-N.; Wang, Y.; Kokot, S. Talanta 2009, 78, 432.
[25] Ni, Y.-N.; Song, R. M.; Kokot, S. Spectrochim. Acta, Part A 2012, 96, 252.
[26] Kwasniewicz, M.; Czarnecki, M. A. Spectrochim. Acta, Part A 2015, 143, 165.
[27] Parker, M. E.; Steele, D.; Smith, M. J. C. J. Phys. Chem. A 1997, 101, 9618.
[28] Wu, H.-L.; Shibukawa, M.; Oguma, K. J. Chemom. 1998, 12, 1.
[29] Li, S.-F.; Wu, H.-L.; Yu, Y.-J.; Li, Y.-N.; Nie, J.-F.; Fu, H.-Y.; Yu, R.-Q. Talanta 2010, 81, 805.
[30] Su, Z.-Y.; Wu, H.-L.; Liu, Y.-J.; Xu, H.; Zhang, J.; Nie, C.-C.; Yu, R.-Q. Acta Chim. Sinica 2012, 70, 459(in Chinese). (苏志义, 吴海龙, 刘亚娟, 许慧, 张娟, 聂重重, 俞汝勤, 化学学报, 2012, 70, 459.)
[31] Wang, J.-Y.; Wu, H.-L.; Sun, Y.-M.; Gu, H.-W.; Liu, Z.; Liu, Y.-J.; Yu, R.-Q. J. Chromatogr. B 2014, 948-948, 32.
[32] Yin, X.-L.; Wu, H.-L.; Zhang, X.-H.; Gu, H.-W.; Yu, R.-Q. Acta Chim. Sinica 2013, 71, 560(in Chinese). (尹小丽, 吴海龙, 张晓华, 谷惠文, 俞汝勤, 化学学报, 2013, 71, 560.)
[33] Zhang, S.-R.; Wu, H.-L.; Chen, Y.; Zhang, X.-H.; Wang, J.-Y.; Li, Y.; Yu, R.-Q. Chemom. Intell. Lab. Syst. 2013, 121, 9.
[34] Tu, J.-R.; Cai, W.-S.; Shao, X.-G. Analyst 2014, 139, 1016.
[35] Tu, J.-R.; Cai, W.-S.; Shao, X.-G. J. Electroanal. Chem. 2014, 725, 25.
/
〈 |
|
〉 |