综述

金粒子包封介孔二氧化硅杂化载药控释体系

  • 王鑫 ,
  • 谭丽丽 ,
  • 杨英威
展开
  • 吉林大学化学学院 纳微构筑化学国际合作联合实验室 长春 130012

收稿日期: 2016-01-04

  网络出版日期: 2016-02-23

基金资助

项目受国家自然科学基金面上(Nos. 21272093, 51473061)资助.

Controlled Drug Release Systems Based on Mesoporous Silica Capped by Gold Nanoparticles

  • Wang Xin ,
  • Tan Lili ,
  • Yang Yingwei
Expand
  • International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, Changchun 130012

Received date: 2016-01-04

  Online published: 2016-02-23

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21272093 and 51473061).

摘要

靶向给药控释体系既可以增强药物在病灶部位的疗效, 又可以降低药物对正常部位的毒副作用. 基于介孔二氧化硅为"容器"-金纳米粒子为"开关"(MSN-AuNPs)的杂化纳米阀门体系同时具备两种纳米粒子的优良特性, 在化学、生物材料以及临床医药等多学科受到广泛关注. 本文根据刺激手段和应用功能分类, 介绍了单一功能和多重功能的MSN-AuNPs杂化纳米阀门体系的重要研究进展, 以及目前面临的挑战和今后的发展方向.

本文引用格式

王鑫 , 谭丽丽 , 杨英威 . 金粒子包封介孔二氧化硅杂化载药控释体系[J]. 化学学报, 2016 , 74(4) : 303 -311 . DOI: 10.6023/A16010003

Abstract

Nanotechnology, with many advantages to engineer new organized nanomaterials, has attracted much attention in recent decades. Smart drug delivery and controlled release system can enhance the effectiveness of chemotherapy at diseased body parts and reduce its side effects of drugs on normal tissues and cells. With high rigidity and surface area, tailored mesoporous structure, and good biocompatibility, mesoporous silica nanoparticles (MSNs) have been proven to be excellent nanocarriers and delivery vehicle. In the mean time, gold nanoparticles (AuNPs) possess a number of advantages of gold-based nanomaterials that make them appealing for controlled drug delivery applications. The novel nanovalve systems based on MSNs (acting as nanocontainers or reservoirs)-AuNPs (acting as gates or switches), combining the good characteristics of the two kinds of nanoparticles in one system, has captured research interests in the fields of chemistry, biomaterials, nanoscience and clinical medicine. This review article introduces important research progress on the single and multiple functions of controllable drug release systems based on MSN-AuNPs hybrids, which will be illustrated from stimulus and applications points of view. In the section of single responsive systems, we introduce the adaptability and responsiveness of the hybrid systems to external environmental stimuli, such as light (UV and NIR), pH, competitive binding, aptamers, and biological signals. In the section of multiple responsive systems, we focus on the design principle and release effect of dual responsive systems and reversible systems. In addition, the challenges and development direction of this type of nanovalve-based drug delivery systems are systematically discussed. Although the nanogate systems based on MSNs capped by AuNPs, employing many different functions, have made tremendous progress in recent years, collaborations between chemists, material scientists, engineers and medical doctors are in urgent need to further advance this research field and realize their final practical applications in the near future.

参考文献

[1] Bangham, A. D.; Standish, M. M.; Watkins, J. C. Mol. Biol. 1965, 13, 238.
[2] Langer, R.; Brem, H.; Falterman, K.; Klein, M.; Folkman, J. Science 1976, 193, 70.
[3] Zhao, L.; Ding, J.; Xiao, C.; Cheng, X.; Gai, G.; Wang, L. Acta Chim. Sinica 2015, 73, 60. (赵丽, 丁建勋, 肖春生, 陈学思, 盖广清, 王丽艳, 化学学报, 2015, 73, 60.)
[4] Li, J.; Shi, X. Acta Chim. Sinica 2011, 69, 2439 (李建平, 石鑫, 化学学报, 2011, 69, 2439.)
[5] Zhang, Y.; Yang, B.; Xu, L.; Zhang, X.; Tao, L.; Wei, Y. Acta Chim. Sinica 2013, 71, 485 (张亚玲, 杨斌, 许亮鑫, 张小勇, 陶磊, 危岩, 化学学报, 2013, 71, 485.)
[6] Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T.-W.; Olson, D. H.; Sheppard, E. W. J. Am. Chem. Soc. 1992, 114, 10834.
[7] Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature 1992, 359, 710.
[8] Hernandez, R.; Tseng, H.-R.; Wong, J. W.; Stoddart, J. F.; Zink, J. I. J. Am. Chem. Soc. 2004, 126, 3370.
[9] Yang, Y.-W. Med. Chem. Commun. 2011, 2, 1033.
[10] Hu, Y.; Wang, J.; Zhi, Z.; Jiang, T.; Wang, S. J. Colloid. Interface Sci. 2011, 363, 410.
[11] Li, Q.-L.; Sun, Y.; Sun, Y.-L.; Wen, J.; Zhou, Y.; Bing, Q.-M.; Isaacs, L. D.; Jin, Y.; Gao, H.; Yang, Y.-W. Chem. Mater. 2014, 26, 6418.
[12] Colilla, M.; González, B.; Vallet-Regí, M. Biomater. Sci. 2013, 1, 114.
[13] Sun, Y.-L.; Zhou, Y.; Li, Q.-L.; Yang, Y.-W. Chem. Commun. 2013, 49, 9033.
[14] Gibson, L. T. Chem. Soc. Rev. 2014, 43, 5173.
[15] Rimola, A.; Costa, D.; Sodupe, M.; Lambert, J.-F.; Ugliengo, P. Chem. Rev. 2013, 113, 4216.
[16] Zhou, Z.; Zheng, Y.; Wang, Q. Inorg. Chem. 2014, 53, 1530.
[17] Song, W.; Li, J.; Li, Q.; Ding, W.; Yang, X. Anal. Biochem. 2015, 471, 17.
[18] Zhang, Q.; Neoh, K. G.; Xu, L.; Lu, S.; Kang, E. T.; Mahendran, R.; Chiong, E. Langmuir 2014, 30, 6151.
[19] Lee, D. Y.; Hong, J. W.; Park, C.; Lee, H.; Lee, J. E.; Hyeon, T.; Paik, S. R. ACS Nano 2014, 8, 8887.
[20] Huh, S.; Chen, H.-T.; Wiench, J. W.; Pruski, M.; Lin, S.-Y. J. Am. Chem. Soc. 2004, 126, 1010.
[21] Crudden, C. M.; Sateesh, M.; Lewis, R. J. Am. Chem. Soc. 2005, 127, 10045.
[22] Yokoi, T.; Kubota, Y.; Tatsumi, T. Appl. Catal. A-Gen. 2012, 421, 14.
[23] Lin, Y.; Ren, J.; Qu, X. Acc. Chem. Res. 2014, 47, 1097.
[24] Vallet-Regi, M.; Rámila, A.; Del Real, R. P.; Pérez-Pariente, J. Chem. Mater. 2001, 13, 308.
[25] Zhang, Q.; Liu, F.; Nguyen, K. T.; Ma, X.; Wang, X.; Xing, B.; Zhao, Y. Adv. Funct. Mater. 2012, 22, 5144.
[26] Yang, Y.-W.; Sun, Y.-L.; Song, N. Acc. Chem. Res. 2014, 47, 1950.
[27] Song, N.; Yang, Y.-W. Chem. Soc. Rev. 2015, 44, 3474.
[28] Gan, Q.; Lu, X.; Dong, W.; Yuan, Y.; Qian, J.; Li, Y.; Shi, J.; Liu, C. J. Mater. Chem. 2012, 22, 15960.
[29] Aznar, E.; Marcos, M. D.; Martínez-Máñez, R.; Sancenón, F.; Soto. J.; Amorós, P.; Guillem, C. J. Am. Chem. Soc. 2009, 131, 6833.
[30] Muhammad, F.; Guo, M.; Qi, W.; Sun, F.; Wang, A.; Guo, Y.; Zhu, G. J. Am. Chem. Soc. 2011, 133, 8778.
[31] Schlossbauer, A.; Kecht, J.; Bein, T. Angew. Chem., Int. Ed. 2009, 48, 3092.
[32] You, Y.-Z.; Kalebaila, K. K.; Brock, S. L.; Oupický, D. Chem. Mater. 2008, 20, 3354.
[33] Wu, C.; Chen, C.; Lai, J.; Chen, J.; Mu, X.; Zheng, J.; Zhao, Y. Chem. Commun. 2008, 2662.
[34] Lai, J.; Mu, X.; Xu, Y.; Wu, X.; Wu, C.; Li, C.; Chen, J.; Zhao, Y. Chem. Commun. 2010, 46, 7370.
[35] Leung, K. C.-F.; Nguyen, T. D.; Stoddart, J. F.; Zink, J. I. Chem. Mater. 2006, 18, 5919.
[36] Nguyen, T. D.; Liu, Y.; Saha, S.; Leung, K. C.-F.; Stoddart, J. F.; Zink, J. I. J. Am. Chem. Soc. 2007, 129, 626.
[37] Xing, L.; Zheng, H.; Cao, Y.; Che, S. Adv. Mater. 2012, 24, 6433.
[38] Wu, X.; Wang, Z.; Zhu, D.; Zong, S.; Yang, L.; Zhong, Y.; Cui, Y. ACS Appl. Mater. Interfaces 2013, 5, 10895.
[39] Qian, R.; Ding, L.; Ju, H. J. Am. Chem. Soc. 2013, 135, 13282.
[40] Sahk, K.; Agasti, S. S.; Kim, C.; Li, X. N.; Rotello, V. M. Chem. Rev. 2012, 112, 2739.
[41] Dreaden, E. C.; Alkilany, A. M.; Huang, X.; Murphy, C. J.; EI-Sayed, M. A. Chem. Soc. Rev. 2012, 41, 2740.
[42] Chen, M.; Goodman, D. W. Chem. Soc. Rev. 2008, 37, 1860.
[43] Li, H. Ph. D. Dissertation, Jilin University, Changchun, 2015. (李慧, 博士论文, 吉林大学, 长春, 2015.)
[44] Mieszawska, A. J.; Mulder, W. J. M.; Fayad, Z. A.; Cormode, D. P. Mol. Pharm. 2013, 10, 831.
[45] Payne, E. K.; Shuford, K. L.; Park, S.; Schatz, G. C.; Mirkin, C. A. J. Phys. Chem. B 2006, 110, 2150.
[46] Hu, M.; Petrova, H.; Chen, J.; McLellan, J. M.; Siekkinen, A. R.; Marquez, M.; Li, X.; Xia, Y.; Hartland, G. V. J. Phys. Chem. B 2006, 110, 1520.
[47] Fleischer, M.; Zhang, D.; Braun, K.; Jäger, S.; Ehlich, R.; Häffner, M.; Stanciu, C.; Hörber, J. K. H.; Meixner, A. J.; Kern, D. P. Nanotechnology 2010, 21, 065301.
[48] Kneipp, J.; Kneipp, H.; Rice, W. L.; Kneipp, K. Anal. Chem. 2005, 77, 2381.
[49] Heo, D. N.; Yang, D. H.; Moon, H.-J.; Lee, J. B.; Bae, M. S.; Lee, S. C.; Lee, W. J.; Sun, I.-C.; Kwon, I. K. Biomaterials 2012, 33, 856.
[50] Xu, J. Ph. D. Dissertation, Sichuan University, Chengdu, 2007. (徐俊强, 博士论文, 四川大学, 成都, 2007.)
[51] Sun, Y.-L.; Yang, B.-J.; Zhang, S. X.-A.; Yang, Y.-W. Chem. Eur. J. 2012, 18, 9212.
[52] Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. J. Chem. Soc., Chem. Commun. 1994, 801.
[53] Turkevich, J.; Stevenson, P. C.; Hillier, J. Discuss. Faraday Soc. 1951, 11, 55.
[54] Frens, G. Nat. Phys. Sci. 1973, 241, 20.
[55] Li, H.; Chen, D.-X.; Sun, Y.-L.; Zheng, B. Y.; Tan, L.-L.; Weiss, P. S.; Yang, Y.-W. J. Am. Chem. Soc. 2013, 135, 1570.
[56] Raghuram, R. K.; Flavia, F.; Gennaro, D.; Ludovic, D.; Wafa, A.; Bhavik, A. P.; Gareth, W. V. C.; Ian, A. G.; Dipak, S.;. Mikhalovsky, S. V.; Cragg, P. J. Supramol. Chem. 2016, DOI: 10. 1080/10610278.2015.1111375.
[57] Hostetler, M. J.; Wingate, J. E.; Zhong, C.-J.; Harris, J. E.; Vachet, R. W.; Clark, M. R.; Londono, J. D.; Green, S. J.; Stokes, J. J.; Wignall, G. D.; Glish, G. L.; Porter, M. D.; Evans, N. D.; Murray, R. W. Langmuir 1998, 14, 17.
[58] Panda, T.; Deepa, K. J. Nanosci. Nanotech. 2011, 11, 10279.
[59] Ghosh, P. S.; Kim, C.-K.; Han, G.; Forbes, N. S.; Rotello, V. M. ACS Nano 2008, 2, 2213.
[60] Mulder, W. J. M.; Strijkers, G. J.; Van Tilborg, G. A. F.; Cormode, D. P.; Fayad, Z. A.; Nicolay, K. Acc. Chem. Res. 2009, 42, 904.
[61] Tang, D.; Lin, Y.; Zhou, Q.; Lin, Y.; Li, P.; Niessner, R.; Knopp, D.; Anal. Chem. 2014, 86, 11451.
[62] Vivero-Escoto, J. L.; Slowing, I. I.; Wu, C.-W.; Lin, S.-Y. J. Am. Chem. Soc. 2009, 131, 3462.
[63] Luo, G.; Chen, W.; Jia, H.; Sun, Y.; Cheng, H.; Zhuo, R.; Zhang, X. Nano. Res. 2015, 8, 1893.
[64] Chen, L.; Di, J.; Cao, C.; Zhao, Y.; Ma, Y.; Luo, J.; Wen, Y.; Song, W.; Song, Y.; Jiang, L. Chem. Commun. 2011, 47, 2850.
[65] Wen, Y; Xu, L.; Wang, W.; Wang, D.; Du, H.; Zhang, X. Nanoscale 2012, 4, 4473.
[66] Nadrah. P.; Planinšek, O.; Gaberš?ek, M. J. Mater. Sci. 2014, 49, 481.
[67] Ott, A.; Yu, X.; Hartmann, R.; Rejman, J.; Schütz, A.; Ochs, M.; Parak, W. J.; Carregal-Romero, S. Chem. Mater. 2015, 27, 1929.
[68] Li, H.; Tan, L.-L.; Jia, P.; Li, Q.-L.; Sun, Y.-L.; Zhang, J.; Ning, Y.-Q.; Yu, J.; Yang, Y.-W. Chem. Sci. 2014, 5, 2804.
[69] Li, Q.-L.; Xu, S.-H.; Zhou, H.; Wang, X.; Dong, B.; Gao, H.; Tang, J.; Yang, Y.-W. ACS Appl. Mater. Interfaces 2015, 7, 28656.
[70] Liu, R.; Zhang, Y.; Zhao, X.; Agarwal, A.; Mueller, L. J.; Feng, P. J. Am. Chem. Soc. 2010, 132, 1500.
[71] Zhu, C.-L.; Lu, C.-H.; Song, X.-Y.; Yang, H,-H.; Wang, X.-R. J. Am. Chem. Soc. 2011, 133, 1278.
[72] Chen, L.; Wen, Y.; Su, B.; Di, J.; Song, Y.; Jiang, L.; J. Mater. Chem. 2011, 21, 13811.
[73] Wen, Y.; Xu, L; Li, C.; Du, H.; Chen, L.; Su, B.; Zhang, Z.; Zhang, X.; Song, Y. Chem. Commun. 2012, 48, 8410.
[74] Zhang, R.; Li, L.; Feng, J.; Tong, L.; Wang, Q.; Tang, B. ACS Appl. Mater. Interfaces 2014, 6, 9932.
[75] Gui, W.; Wang, W.; Jiao, X.; Chen, L.; Wen, Y.; Zhang, X. ChemPhysChem 2015, 16, 607.

文章导航

/