综述

基于天然小分子化合物的超分子自组装

  • 高玉霞 ,
  • 胡君 ,
  • 巨勇
展开
  • a. 清华大学化学系 生命有机磷化学及化学生物学教育部重点实验室 北京 100084;
    b. 中国科学院长春应用化学研究所 高分子物理与化学国家重点实验室 长春 130022

收稿日期: 2016-01-08

  网络出版日期: 2016-03-03

基金资助

项目受国家自然科学基金(No. 21472108)、国家重大科学研究计划(973计划, No. 2012CB821600)和高分子物理与化学国家重点实验室开放课题基金资助.

Supramolecular Self-Assembly Based on Natural Small Molecules

  • Gao Yuxi ,
  • Hu Jun ,
  • Ju Yong
Expand
  • a Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084;
    b State Key Lab of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022

Received date: 2016-01-08

  Online published: 2016-03-03

Supported by

Project supported by the National Natural Science Foundation of China (No. 21472108), the National Basic Research Program of China (973 Program, No. 2012CB821600), and Open Research Fund of State Key Laboratory of Polymer Physics and Chemistry, CIAC.

摘要

天然产物来源广泛、手性结构独特、具有多修饰位点、良好的生物相容性和可控的降解性, 与其他非天然产物的自组装体系相比, 具有更多的优势. 简单修饰的天然产物在溶剂中容易形成氢键、π-π堆积、范德华作用等非共价键作用, 促使分子有序排列形成聚集体, 成为超分子自组装体系的重要构筑基元. 同时, 其独特的手性结构在分子有序排列过程中, 通常会实现手性由分子层次到超分子层次的传递和放大, 因此, 可用于构建螺旋带、纳米管等多种手性组装体. 天然产物良好的生物相容性和生物活性, 也使得基于此类化合物的组装体可应用于组织工程、药物传递、细胞成像等生命科学领域, 显示其广阔的应用前景. 本文介绍了基于氨基酸、糖、核苷碱基、甾体、三萜等天然产物缀合物在超分子自组装特性方面的研究概况及其发展趋势.

本文引用格式

高玉霞 , 胡君 , 巨勇 . 基于天然小分子化合物的超分子自组装[J]. 化学学报, 2016 , 74(4) : 312 -329 . DOI: 10.6023/A16010016

Abstract

Natural products have been widely used in the construction of supramolecular self-assemblies due to not only their abundant resources, unique chiral structures, and multiple reaction sites, but also the good biocompatibility and the controllable degradability. Through the simple chemical modification natural products-based functional molecules would self-assemble into various supramolecular assemblies primarily promoted by non-covalent interactions, such as hydrogen bonding, π-π stacking, van der Waals forces, electrostatic interactions, and charge-transfer interactions. During the assembly process, their unique molecular chirality would be transferred and magnified into supramolecular assemblies, thus providing a facile method to fabricate helical ribbons, nanotubes, and other chiral nanostructures. Furthermore, their good biocompatibility and biological activity endow the assemblies with the ability to be widely applied in tissue engineering, drug delivery, cell imaging, and so on. In this review, recent developments of supramolecular self-assemblies based on amino acids, sugars, nucleosides, steroids, triterpenoids and other natural products were summarized.

参考文献

[1] Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418.
[2] Rybtchinski, B. ACS Nano 2011, 5, 6791.
[3] Prins, L. J.; Reinhoudt, D. N.; Timmerman, P. Angew. Chem., Int. Ed. 2001, 40, 2382.
[4] Zhang, L.; Wang, X.; Wang, T.; Liu, M. Small 2015, 11, 1025.
[5] Sangeetha, N. M.; Maitra, U. Chem. Soc. Rev. 2005, 34, 821.
[6] Díaz, D. D.; Kühbeck, D.; Koopmans, R. J. Chem. Soc. Rev. 2011, 40, 427.
[7] Hong, C.; Wang, H. Acta Chim. Sinica 2014, 72, 739. (洪传敏, 王海水, 化学学报, 2014, 72, 739.)
[8] Yang, W.; Yu, S.; Chen, S.; Liu, Y.; Shao, Z.; Chen, X. Acta Chim. Sinica 2014, 72, 1164. (杨文华, 俞淑英, 陈胜, 刘也卓, 邵正中, 陈新, 化学学报, 2014, 72, 1164.)
[9] Ran, M.; Shi, D.; Dong, H.; Chen, M.; Zhao, Z. Acta Chim. Sinica 2015, 73, 1047. (冉茂双, 施冬键, 董罕星, 陈明清, 赵增亮, 化学学报, 2015, 73, 1047.)
[10] Zang, L.; Che, Y.; Moore, J. S. Acc. Chem. Res. 2008, 41, 1596.
[11] Cui, H.; Webber, M. J.; Stupp, S. I. Peptide Science 2010, 94, 1.
[12] Leininger, S.; Olenyuk, B.; Stang, P. J. Chem. Rev. 2000, 100, 853.
[13] Du, X.; Zhou, J.; Xu, B. Chem. Asian J. 2014, 9, 1446.
[14] Schnerder, H.-J.; Agrawal, P.; Yatsimirsky, A. K. Chem. Soc. Rev. 2013, 42, 6777.
[15] Hosta-Rigau, L.; Zhang, Y.; Teo, B.; Postma, A.; Städler, B. Nanoscale 2013, 5, 89.
[16] Lu, J.; Ju, Y. Chin. J. Org. Chem. 2013, 33, 469. (卢金荣, 巨勇, 有机化学, 2013, 33, 469.)
[17] Ren, C.; Zhang, J.; Chen, M.; Yang, Z. Chem. Soc. Rev. 2014, 43, 7257.
[18] Kuang, Y.; Shi, J.; Li, J.; Yuan, D.; Alberti, K. A.; Xu, Q.; Xu, B. Angew. Chem., Int. Ed. 2014, 53, 8104.
[19] Duan, P.; Cao, H.; Zhang, L.; Liu, M. Soft Matter 2014, 10, 5428.
[20] Shi, J.; Gao, Y.; Yang, Z.; Xu, B. Beilstein J. Org. Chem. 2011, 7, 167.
[21] Yang, Z.; Gu, H.; Fu, D.; Gao, P.; Lam, J. K.; Xu, B. Adv. Mater. 2004, 16, 1440.
[22] Nanda, J.; Biswas, A.; Banerjee, A. Soft Matter 2013, 9, 4198.
[23] Dubey, M.; Kumar, A.; Pandey, D. S. Chem. Commun. 2014, 50, 1675.
[24] Friggeri, A.; Feringa, B. L.; van Esch, J. J. Controlled Release 2004, 97, 241.
[25] Haridas, V.; Sahu, S.; Sapala, A. R. Chem. Commun. 2012, 48, 3821.
[26] Lv, K.; Qin, L.; Wang, X.; Zhang, L.; Liu, M. Phys. Chem. Chem. Phys. 2013, 15, 20197.
[27] Wang, X.; Duan, P.; Liu, M. Chem. Commun. 2012, 48, 7501.
[28] Wang, X.; Liu, M. Chem. Eur. J. 2014, 20, 10110.
[29] Qin, L.; Duan, P.; Xie, F.; Zhang, L.; Liu, M. Chem. Commun. 2013, 49, 10823.
[30] Shen, Z.; Wang, T.; Liu, M. Chem. Commun. 2014, 50, 2096.
[31] Shen, Z.; Wang, T.; Liu, M. Langmuir 2014, 30, 10772.
[32] Liu, C.; Jin, Q.; Lv, K.; Zhang, L.; Liu, M. Chem. Commun. 2014, 50, 3702.
[33] Suzuki, M.; Hanabusa, K. Chem. Soc. Rev. 2009, 38, 967.
[34] Suzuki, M.; Yumoto, M.; Shirai, H.; Hanabusa, K. Chem. Eur. J. 2008, 14, 2133.
[35] Song, Q.; Geng, H.; Wang, L.; Ye, L.; Zhang, A.; Shao, Z.; Feng, Z. Acta Chim. Sinica 2015, 73, 423. (宋倩颖, 耿慧敏, 王璐, 叶霖, 张爱英, 邵自强, 冯增国, 化学学报, 2015, 73, 423.)
[36] Suzuki, M.; Nakajima, Y.; Yumoto, M.; Kimura, M.; Shirai, H.; Hanabusa, K. Langmuir 2003, 19, 8622.
[37] Reches, M.; Gazit, E. Science 2003, 300, 625.
[38] Zhao, J.; Huang, R.; Qi, W.; Wang, Y.; Su, R.; He, Z. Prog. Chem. 2014, 26, 1445. (赵君, 黄仁亮, 齐崴, 王跃飞, 苏荣欣, 何志敏, 化学进展, 2014, 26, 1445.)
[39] Yan, X.; Zhu, P.; Li, J. Chem. Soc. Rev. 2010, 39, 1877.
[40] Yan, X.; Cui, Y.; He, Q.; Wang, K.; Li, J. Chem. Mater. 2008, 20, 1522.
[41] Yan, X.; He, Q.; Wang, K.; Duan, L.; Cui, Y.; Li, J. Angew. Chem., Int. Ed. 2007, 46, 2431.
[42] Yan, X.; Cui, Y.; He, Q.; Wang, K.; Li, J.; Mu, W.; Wang, B.; Ou-yang, Z. Chem. Eur. J. 2008, 14, 5974.
[43] Fleming, S.; Ulijn, R. V. Chem. Soc. Rev. 2014, 43, 8150.
[44] Jayawarna, V.; Ali, M.; Jowitt, T. A.; Miller, A. F.; Saiani, A.; Gough, J. E.; Ulijn, R. V. Adv. Mater. 2006, 18, 611.
[45] Tang, C.; Smith, A. M.; Collins, R. F.; Ulijn, R. V.; Saiani, A. Langmuir 2009, 25, 9447.
[46] Yang, Z.; Xu, K.; Wang, L.; Gu, H.; Wei, H.; Zhang, M.; Xu, B. Chem. Commun. 2005, 41, 4414.
[47] Yang, Z.; Liang, G.; Guo, Z.; Guo, Z.; Xu, B. Angew. Chem., Int. Ed. 2007, 46, 8216.
[48] Yang, Z.; Liang, G.; Wang, L.; Xu, B. J. Am. Chem. Soc. 2006, 128, 3038.
[49] Zhang, Y.; Kuang, Y.; Gao, Y.; Xu, B. Langmuir 2011, 27, 529.
[50] Wang, H.; Yang, Z. Nanoscale 2012, 4, 5259.
[51] Gao, J.; Wang, H.; Wang, L.; Wang, J.; Kong, D.; Yang, Z. J. Am. Chem. Soc. 2009, 131, 11286.
[52] Wang, H.; Ren, C.; Song, Z.; Wang, L.; Chen. X.; Yang, Z. Nanotechnology 2010, 21, 225606.
[53] Shi, Y.; Wang, Z.; Zhang, X.; Xu, T.; Ji, S.; Ding, D.; Yang, Z.; Wang, L. Chem. Commun. 2015, 51, 15265.
[54] Ren, C.; Song, Z.; Zheng, W.; Chen, X.; Wang, L.; Kong, D.; Yang, Z. Chem. Commun. 2011, 47, 1619.
[55] Birchall, L. S.; Roy, S.; Jayawarna, V.; Hughes, M.; Irvine, E.; Okorogheye, G. T.; Saudi, N.; Santis, E. D.; Tuttle, T.; Edwards, A. A.; Ulijn, R. V. Chem. Sci. 2011, 2, 1349.
[56] Chabre, Y. M.; Roy, R. Chem. Soc. Rev. 2013, 42, 4657.
[57] Gronwald, O.; Shinkai, S. Chem. Eur. J. 2001, 7, 4328.
[58] Vidyasagar, A.; Handore, K.; Sureshan, K. M. Angew. Chem., Int. Ed. 2011, 50, 8021.
[59] Wang, K. Prog. Chem. 2015, 27, 775. (王克让, 化学进展, 2015, 27, 775.)
[60] Ryu, J.-H.; Lee, E.; Lim, Y.-B.; Lee, M. J. Am. Chem. Soc. 2007, 129, 4808.
[61] Lee, D.-W.; Kim, T.; Park, I.-S.; Huang, Z.; Lee, M. J. Am. Chem. Soc. 2012, 134, 14722.
[62] Lin, Y.; Wang, A.; Qiao, Y.; Gao, C.; Drechsler, M.; Ye, J.; Yan, Y.; Huang, J. Soft Matter 2010, 6, 2031.
[63] Kim, B.-S.; Yang, W.-Y.; Ryu, J.-H.; Yoo, Y.-S.; Lee, M. Chem. Commun. 2005, 41, 2035.
[64] Kim, B.-S.; Hong, D.-J.; Bae, J.; Lee, M. J. Am. Chem. Soc. 2005, 127, 16333.
[65] Hu, J.; Kuang, W.; Deng, K.; Zou, W.; Huang, Y.; Wei, Z.; Faul, C. F. J. Adv. Funct. Mater. 2012, 22, 4149.
[66] Yang, Y.; Zhang, Y.; Wei, Z. Adv. Mater. 2013, 25, 6039.
[67] Sun, K.; Xiao, C.; Liu, C.; Fu, W.; Wang, Z.; Li, Z. Langmuir 2014, 30, 11040.
[68] Huang, Y.; Hu, J.; Kuang, W.; Wei, Z.; Faul, C. F. J. Chem. Commun. 2011, 47, 5554.
[69] Wang, K.; An, H.; Wang, Y.; Zhang, J.; Li, X. Org. Biomol. Chem. 2013, 11, 1007.
[70] Wang, K.; An, H.; Qian, F.; Wang, Y.; Zhang, J.; Li, X. RSC Adv. 2013, 3, 23190.
[71] Wang, K.; Han, D.; Cao, G.; Li, X. Chem. Asian J. 2015, 10, 1204.
[72] Wang, K.; An, H.; Wu, L.; Zhang, J.; Li, X. Chem. Commun. 2012, 48, 5644.
[73] Clemente, M. J.; Fitremann, J.; Mauzac, M.; Serrano, J. L.; Oriol, L. Langmuir 2011, 27, 15236.
[74] Clemente, M. J.; Romero, P.; Serrano, J. L.; Fitremann, J.; Oriol, L. Chem. Mater. 2012, 24, 3847.
[75] Skilling, K. J.; Ndungu, A.; Kellam, B.; Ashford, M.; Bradshaw, T. D.; Marlow, M. J. Mater. Chem. B 2014, 2, 8412.
[76] Moreau, L.; Barthélémy, P.; Maataoui, M. E.; Grinstaff, M. W. J. Am. Chem. Soc. 2004, 126, 7533.
[77] Du, X.; Li, J.; Gao, Y.; Kuang, L.; Xu, B. Chem. Commun. 2012, 48, 2098.
[78] Davis, J. T.; Spada, G. P. Chem. Soc. Rev. 2007, 36, 296.
[79] Shao, Y.; Li, C.; Zhou, X.; Chen, P.; Yang, Z.; Li, Z.; Liu, D. Acta Chim. Sinica 2015, 73, 815. (邵昱, 李闯, 周旭, 陈平, 杨忠强, 李志波, 刘冬生, 化学学报, 2015, 73, 815.)
[80] Lin, C.; Zhai, W.; Fan, L.; Li, X. Acta Chim. Sinica 2014, 72, 709. (蔺超, 翟伟, 范楼珍, 李晓宏, 化学学报, 2014, 72, 709.)
[81] Adhikari, B.; Shah, A.; Kraatz, H.-B. J. Mater. Chem. B 2014, 2, 4802.
[82] Peters, G. M.; Skala, L. P.; Plank, T. N.; Hyman, B. J.; Reddy, G. N. M.; Marsh, A.; Brown, S. P.; Davis, J. T. J. Am. Chem. Soc. 2014, 136, 12596.
[83] Wu, J.; Yi, T.; Xia, Q.; Zou, Y.; Liu, F.; Dong, J.; Shu, T.; Li, F.; Huang, C. Chem. Eur. J 2009, 15, 6234.
[84] Tu, T.; Fang, W.; Bao, X.; Li, X.; Dötz, K. H. Angew. Chem., Int. Ed. 2011, 50, 6601.
[85] Xu, F.; Wang, H.; Zhao, J.; Liu, X.; Li, D.; Chen, C.; Ji, J. Macromolecules 2013, 46, 4235.
[86] Lin, Y.-C.; Kachar, B.; Weiss, R. G. J. Am. Chem. Soc. 1989, 111, 5542.
[87] Xu, Z.; Peng, J.; Yan, N.; Yu, H.; Zhang, S.; Liu, K.; Fang, Y. Soft Matter 2013, 9, 1091.
[88] Yu, X.; Li, Y.; Yin, Y.; Yu, D. Mater. Sci. Eng., C 2012, 32, 1695.
[89] Zhou, G.; Li, Y.; Yu, X.; Yu, D.; Yin, Y. Supramol. Chem. 2012, 24, 234.
[90] Smith, M. M.; Smith, D. K. Soft Matter 2011, 7, 4856.
[91] Xue, M.; Liu, K.; Peng, J.; Zhang, Q.; Fang, Y. J. Colloid Interface Sci. 2008, 327, 94.
[92] Peng, J.; Liu, K.; Liu, J.; Zhang, Q.; Feng, X.; Fang, Y. Langmuir 2008, 24, 2992.
[93] Gao, D.; Xue, M.; Peng, J.; Liu, J.; Yan, N.; He, P.; Fang, Y. Tetrahedron 2010, 66, 2961.
[94] George, M.; Weiss, R. G. Acc. Chem. Res. 2006, 39, 489.
[95] Svobodová, H.; Noponen, V.; Kolehmainen, E.; Sievänen, E. RSC Adv. 2012, 2, 4985.
[96] Kong, L.; Sun, T.; Zhang, F.; Xin, F.; Hao, A. Prog. Chem. 2012, 24, 790. (孔丽, 孙涛, 张峰, 辛飞飞, 郝爱友, 化学进展, 2012, 24, 790.)
[97] Murata, K.; Aoki, M.; Suzuki, T.; Harada, T.; Kawabata, H.; Komori, T.; Ohseto, F.; Ueda, K.; Shinkai, S. J. Am. Chem. Soc. 1994, 116, 6664.
[98] Sumiya, S.; Shiraishi, Y.; Hirai, T. New J. Chem. 2013, 37, 2642.
[99] Liu, J.; Yan, J.; Yuan, X.; Liu, K.; Peng, J.; Fang, Y. J. Colloid Interface Sci. 2008, 318, 397.
[100] He, P.; Liu, J.; Liu, K.; Ding, L.; Yan, J.; Gao, D.; Fang, Y. Colloids and Surfaces A: Physicochem. Eng. Aspects 2010, 362, 127.
[101] Xing, P.; Chen, H.; Bai, L.; Zhao, Y. Chem. Commun. 2015, 51, 9309.
[102] Gao, Y.; Lu, J.; Wu, J.; Hu, J.; Ju, Y. RSC Adv. 2014, 4, 63539.
[103] van Herpt, J. T.; Areephong, J.; Stuart, M. C.; Browne, W. R.; Feringa, B. L. Chem. Eur. J. 2014, 20, 1737.
[104] Dutta, S.; Kar, T.; Mandal, D.; Das, P. K. Langmuir 2013, 29, 316.
[105] Yu, C.; Gao, C.; Lü, S.; Chen, C.; Huang, Y.; Liu, M. Chem. Eng. J. 2013, 228, 290.
[106] Mukhopadhyay, S.; Maitra, U. Current Science 2004, 87, 1666.
[107] Zhang, H.; Peng, J.; Liu, K.; Fang, Y. Prog. Chem. 2011, 23, 1591. (张荷兰, 彭军霞, 刘凯强, 房喻, 化学进展, 2011, 23, 1591.)
[108] Rich, A.; Blow, D. M. Nature 1958, 182, 423.
[109] Li, Y.; Holzwarth, J. F.; Bohne, C. Langmuir 2000, 16, 2038.
[110] Bohne, C. Langmuir 2006, 22, 9100.
[111] Jiang, L.; Wang, K.; Deng, M.; Wang, Y.; Huang, J. Langmuir 2008, 24, 4600.
[112] Qiao, Y.; Lin, Y.; Wang, Y.; Yang, Z.; Liu, J.; Zhou, J.; Yan, Y.; Huang, J. Nano Lett. 2009, 9, 4500.
[113] Wang, H.; Xu, W.; Song, S.; Feng, L.; Song, A.; Hao, J. J. Phys. Chem. B 2014, 118, 4693.
[114] Wang, H.; Song, S.; Hao, J.; Song, A. Chem. Eur. J. 2015, 21, 12194.
[115] Travaglini, L.; D’Annibale, A.; Schillén, K.; Olsson, U.; Sennato, S.; Pavel, N. V.; Galantini, L. Chem. Commun. 2012, 48, 12011.
[116] Sajisha, V. S.; Maitra, U. RSC Adv. 2014, 4, 43167.
[117] Li, Y.; Li, G.; Wang, X.; Li, W.; Su, Z.; Zhang, Y.; Ju, Y. Chem. Eur. J. 2009, 15, 6399.
[118] Zhang, M.; Yin, X.; Tian, T.; Liang, Y.; Li, W.; Lan, Y.; Li, J.; Zhou, M.; Ju, Y.; Li, G. Chem. Commun. 2015, 51, 10210.
[119] Ramírez-López, P.; de la Torre, M. C.; Asenjo, M.; Ramírez- Castellanos, J.; González-Calbet, J. M.; Rodríguez-Gimeno, A.; de Arellano, C. R.; Sierra, M. A. Chem. Commun. 2011, 47, 10281.
[120] Bag, B. G.; Maity, G. C.; Pramanik, S. R. Supramol. Chem. 2005, 65, 925.
[121] Bag, B. G.; Dinda, S. K.; Dey, P. P.; Mallia, V. A.; Weiss, R. G. Langmuir 2009, 25, 8663.
[122] Bag, B. G.; Dash, S. S. Nanoscale 2011, 3, 4564.
[123] Bag, B. G.; Majumdar, R. RSC Adv. 2012, 2, 8623.
[124] Bag, B. G.; Paul, K. Asian J. Org. Chem. 2012, 1, 150.
[125] Bag, B. G.; Majumdar, R.; Dinda, S. K.; Dey, P. P.; Maity, G. C.; Mallia, V. A.; Weiss, R. G. Langmuir 2013, 29, 1766.
[126] Hu, J.; Zhang, M.; Ju, Y. Soft Matter 2009, 5, 4971.
[127] Lu, J.; Hu, J.; Liu, C.; Gao, H.; Ju, Y. Soft Matter 2012, 8, 9576.
[128] Lu, J.; Hu, J.; Song, Y.; Ju, Y. Org. Lett. 2011, 13, 3372.
[129] Lu, J.; Gao, Y.; Wu, J.; Ju, Y. RSC Adv. 2013, 3, 23548.
[130] Lu, J.; Wu, J.; Ju, Y. New J. Chem. 2014, 38, 6050.
[131] Wu, J.; Lu, J.; Hu, J.; Gao, Y.; Ma, Q.; Ju, Y. RSC Adv. 2013, 3, 24906.
[132] Gao, Y.; Hao, J.; Wu, J.; Zhang, X.; Hu, J.; Ju, Y. Nanoscale 2015, 7, 13568.
[133] Gao, Y.; Hao, J.; Wu, J.; Zhang, X.; Hu, J.; Ju, Y. Langmuir 2016, 32, 1685.
[134] Gao, Y.; Li, Y.; Zhao, X.; Hu, J.; Ju, Y. RSC Adv. 2015, 5, 102097.
[135] Saha, A.; Adamcik, J.; Bolisetty, S.; Handschin, S.; Mezzenga, R. Angew. Chem., Int. Ed. 2015, 54, 5408.
[136] Zhang, Q.; Qu, D.; Ma, X.; Tian, H. Chem. Commun. 2013, 49, 9800.
[137] Zhang, Q.; Yao, X.; Qu, D.; Ma, X. Chem. Commun. 2014, 50, 1567.
[138] Reddie, K. G.; Humphries, W. H.; Bain, C. P.; Payne, C. K.; Kemp, M. L.; Murthy, N. Org. Lett. 2012, 14, 680.
[139] Fan, W.; Li, M.; Hong, C.; Pan, C. Acta Chim. Sinica 2015, 73, 330. (范溦, 李敏, 洪春雁, 潘才元, 化学学报, 2015, 73, 330.)
[140] Yu, H.; Mizufune, H.; Uenaka, K.; Moritoki, T.; Koshima, H. Tetrahedron 2005, 61, 8932.
[141] Chen, G.; Xue, P.; Lu, R.; Song, D.; Bao, C.; Xu, T.; Zhao, Y. Chem. Res. Chin. Univ. 2009, 25, 178.
[142] Ji, W.; Liu, G.; Xu, M.; Dou, X.; Feng, C. Chem. Commun. 2014, 50, 15545.
[143] Vemula, P. K.; John, G. Acc. Chem. Res. 2008, 41, 769.
[144] John, G.; Masuda, M.; Okada, Y.; Yase, K.; Shimizu, T. Adv. Mater. 2001, 13, 715.
[145] John, G.; Jung, J. H.; Minamikawa, H.; Yoshida, K.; Shimizu, T. Chem. Eur. J. 2002, 8, 5494.
[146] Vemula, P. K.; Aslam, U.; Mallia, V. A.; John, G. Chem. Mater. 2007, 19, 138.
[147] Nandi, S.; Altenbach, H.; Jakob, B.; Lange, K.; Ihizane, R.; Schneider, M. P. Org. Lett. 2011, 13, 1980.
[148] Chakraborty, P.; Roy, B.; Bairi, P.; Nandi, A. K. J. Mater. Chem. 2012, 22, 20291.
[149] Xing, P.; Chu, X.; Ma, M.; Li, S.; Hao, A. Phys. Chem. Chem. Phys. 2014, 16, 8346.

文章导航

/