P(NIPAM-co-RhBHA)-NP的双重荧光响应行为与影响机制
Dual Stimulus-responsive Fluorescence Behavior and Mechanism of P(NIPAM-co-RhBHA)-NP
Received date: 2016-01-31
Online published: 2016-03-03
以萘二甲酰亚胺与罗丹明B酰肼基硫脲两种有机荧光染料的光谱重叠特性, 及罗丹明B酰肼基硫脲在pH诱导下的可逆“开-闭”环反应为基础, 分别将其作为荧光共振能量转移(Fluorescence Resonance Energy Transfer, FRET)体系的供、受体, 并与聚N-异丙基丙烯酰胺(PNIPAM)的温敏特性相结合, 通过一系列化学反应, 合成了一种具有双重荧光刺激-响应特性的大分子P(NIPAM-co-RhBHA)-NP. 采用1H NMR、FTIR、UV-vis和GPC对其结构进行了表征. 采用荧光光谱(PL)研究了缓冲溶液中该聚合物对环境温度和pH值的双重荧光响应行为, 并对其影响机制进行了探讨. 结果表明, 酸性条件下大分子中RhBHA和NP-NH2之间会发生荧光共振能量传递; pH值和环境温度变化对大分子P(NIPAM-co-RhBHA)-NP的荧光发射具有显著影响.
关键词: 萘二甲酰亚胺; 罗丹明B酰肼基硫脲; 聚N-异丙基丙烯酰胺; 荧光共振能量传递; 刺激-响应性聚合物
宋秋生 , 周稳 , 吴新民 , 吴凡 . P(NIPAM-co-RhBHA)-NP的双重荧光响应行为与影响机制[J]. 化学学报, 2016 , 74(5) : 435 -440 . DOI: 10.6023/A16010073
In the present study, based on spectral overlap between 1,8-naphthalimide and N-acrylyl-N'-rhodamine B acylhydrazine thiourea (RhBHA), reversible “on-off” ring reaction of RhBHA at various pH values, and thermosensitive property of poly(N-isopropyl acrylamide) (PNIPAM), a novel linear polymer P(NIPAM-co-RhBHA)-NP was prepared via a series of chemical reactions. Firstly, 4-(2-aminoethyl)amino-N-aminopropane-1,8-naphthalimide (NP-NH2) and RhBHA were prepared respectively, and they were used as the donor and acceptor to construct a fluorescence resonance energy transfer (FRET) system. Secondly, incorporating RhBHA into PNIPAM by reversible addition-fragmentation chain transfer polymerization (RAFT), P(NIPAM-co-RhBHA) was synthesized. Finally, P(NIPAM-co-RhBHA)-NP was fabricated by amide condensation between NP-NH2 and the as-prepared P(NIPAM-co-RhBHA). The structure of P(NIPAM-co-RhBHA)-NP was characterized via 1H NMR, FTIR, UV-vis and GPC. The fluorescence responsive behavior of the polymer to environmental temperature and pH value was investigated by photoluminescence (PL) in buffer solutions, and the mechanism was discussed in detail. The results indicate that, in an acidic solution, energy can be transferred from NP-NH2 moieties to RhBHA moieties via FRET mechanism, either pH values or environmental temperatures play important roles to affect the fluorescence emission of P(NIPAM-co-RhBHA)-NP.
[1] Dai, S.; Ravi, P.; Tam, K. C. Soft Matter 2009, 5, 2513.
[2] Song, Q. S.; Yang, Y.; Gao, K.; Ma, H. H. J. Lumin. 2013, 136, 437.
[3] Dai, S.; Ravi, P.; Tam, K. C. Soft Matter 2008, 4, 435.
[4] Yang, Y.; Song, Q. S.; Gao, K.; Ma, H. H.; Yang, S. S.; Li, T. J. Appl. Polym. Sci. 2014, 131, 1001.
[5] Li, C. H.; Hu, J. M.; Liu, S. Y. Soft Matter 2012, 8, 7096.
[6] Kim, H. J.; Lee, M. H.; Mutihac, L. Chem. Soc. Rev. 2012, 41, 1173.
[7] Song, Q. S.; Yang, S. S.; Sheng, R.; Li, T. Acta Chim. Sinica 2014, 72, 89. (宋秋生, 杨森森, 盛锐, 李谭, 化学学报, 2014, 72, 89.)
[8] Förster, T. Ann. Phys. 1984, 2, 55.
[9] Chen, K. J.; Chiu, Y. L.; Chen, Y. M.; Ho, Y. C.; Sung, H. W. Biomaterials 2011, 32, 2586.
[10] Kim, G. B.; Kim, Y. P. Theranostics 2012, 2, 127.
[11] Uchiyama, S.; Kimura, K.; Gota, C.; Okabe, K.; Kawamoto, K.; Inada, N.; Yoshihara, T.; Tobita, S. Chem. Eur. J. 2012, 18, 9552.
[12] Liu, S. Y.; Hu, J. M.; Li, C. H. Langmuir 2011, 44, 4699.
[13] Song, Q. S.; Gao, K.; Yao, W.; Yang, Y.; Ma, H. H. Acta Chim. Sinica 2012, 70, 2155. (宋秋生, 高康, 姚伟, 杨洋, 马海红, 化学学报, 2012, 70, 2155.)
[14] Kim, H. N.; Lee, M. H.; Kim, H. J. Chem. Soc. Rev. 2008, 37, 1465.
[15] Yang, Y. K.; Yook, K. J.; Tea, J. J. Am. Chem. Soc. 2005, 127, 16760.
[16] Yu, M. X.; Shi, M.; Chen, Z. G. Chem. Eur. J. 2008, 14, 6892.
[17] Shiraishi, Y.; Miyamoto, R.; Zhang, X. Org. Lett. 2007, 9, 3921.
[18] Hu, J. M.; Li, C. H.; Liu, S. Y. Langmuir 2010, 26, 724.
[19] Ko, S. K.; Yang, Y. K.; Tae, J.; Shin, I. J. Am. Chem. Soc. 2006, 128, 14150.
[20] Chang, W. B.; Li, K. A. Concise Handbook of Analytical Chemistry, Peking University Press, Beijing, 1981, pp. 262~263. (常文保, 李克安, 简明分析化学手册, 北京大学出版社, 北京, 1981, pp. 262~263.)
[21] Li, T.; Zhou, W.; Song, Q. S.; Fang, W. C. J. Photochem. Photobiol. A 2015, 302, 51.
[22] Li, C. H.; Liu, S. Y. J. Mater. Chem. 2010, 20, 10716.
[23] Birks, J. B. Photophysics of Aromatic Molecules, Wiley, New York, 1970, pp. 73~75.
[24] Ding, D.; Li, K.; Liu, B.; Tang, B. Z. Acc. Chem. Res. 2013, 46, 2441.
[25] Xu, J. G.; Wang, Z. B. Fluorescence Analysis, Science Press, Beijing, 2006, pp. 12~13. (许金钩, 王尊本, 荧光分析, 科学出版社, 北京, 2006, pp. 12~13.)
[26] Zakerhamidi, M. S.; Ghanadzadeh, A.; Moghadam, M. Spectrochim. Acta Part A 2011, 78, 961.
[27] Osada, Y.; Gong, J. P. Adv. Mater. 1998, 10, 827.
[28] Galave, I.; Mattiasson, B. Enzyme. Microb. Tech. 1993, 15, 354.
[29] Vogt, A. P.; Gondi, S. R.; Sumerlin, B. S. Aust. J. Chem. 2007, 60, 396.
[30] Zeng, H. B.; Li, Y. B.; Zhang, H. Y.; Wang, X. G. Acta Polym. Sinica 2004, (3), 327. (曾洪波, 李耀邦, 张昊宇, 王晓工, 高分子学报, 2004, (3), 327.)
[31] Lai, J. T.; Filla, D.; Shea, R. Macromolecules 2002, 35, 6754.
[32] Vonlanthen, M.; Finney, N. S. J. Org. Chem. 2013, 78, 3980.
[33] Yang, X.; Guo, X.; Zhao, Y. Talanta 2002, 57, 883.
/
〈 |
|
〉 |