综述

重氮化合物转化中的氮基团保留反应研究进展

  • 邱頔 ,
  • 邱孟龙 ,
  • 马戎 ,
  • 张艳 ,
  • 王剑波
展开
  • a 天津师范大学化学学院 天津市功能分子结构与性能重点实验室 无机-有机杂化功能材料化学教育部重点实验室 天津 300387;
    b 北京大学化学与分子工程学院 生物有机与分子工程教育部重点实验室 北京分子科学国家实验室 北京100871

收稿日期: 2016-03-29

  网络出版日期: 2016-04-26

基金资助

项目受天津师范大学引进人才人事专项资助(No. 5RL138).

Nitrogen Group Retaining Reaction in the Transformation of Diazo Compounds

  • Qiu Di ,
  • Qiu Menglong ,
  • Ma Rong ,
  • Zhang Yan ,
  • Wang Jianbo
Expand
  • a Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry of Ministry of Education, College of Chemistry, Tianjin Normal University, Tianjin 300387;
    b Beijing National Laboratory of Molecular Sciences BNLMS and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871

Received date: 2016-03-29

  Online published: 2016-04-26

Supported by

Project supported by the scientific research funding of Tianjin Normal University (No. 5RL138).

摘要

重氮化合物是一类非常重要的有机合成中间体, 它在有机合成化学以及药物设计研发、化学生物学、材料化学等领域具有重要的应用价值. 传统的重氮化合物的转化反应类型包括了Wolff重排, 经由过渡金属卡宾或者类卡宾中间体的插入反应, 催化的环丙烷化反应, 以及近年来发展的过渡金属催化的经由卡宾中间体的交叉偶联反应等. 重氮化合物除了发生作为卡宾前体的经典反应之外, 它们还可以经由氮基团保留的转化过程, 在目标分子中保留重氮基团或者其它含氮原子的官能团. 该种策略提供了一种高效而选择性地构筑含氮功能分子、尤其是官能化的氮杂环的合成途径. 其中, 不对称的C—N键的选择性构筑, 以及不对称的氮杂环分子的组装, 仍然具有重要的合成价值和重大的挑战意义. 本篇综述根据反应的机理和类型, 将这部分研究工作分为六部分内容进行介绍.

本文引用格式

邱頔 , 邱孟龙 , 马戎 , 张艳 , 王剑波 . 重氮化合物转化中的氮基团保留反应研究进展[J]. 化学学报, 2016 , 74(6) : 472 -487 . DOI: 10.6023/A16030153

Abstract

Diazo compounds represent a type of very important synthetic intermediates, which demonstrate wide applications in organic synthesis, continuous-in-flow technology, polymer synthesis, medicinal chemistry, chemical biology, material science and many other fields. On the other hand, diazo intermediates can be easily prepared from commercial available substrates through facile transformations, such as base-promoted decomposition of N-tosylhydrazones, diazo-transfer reaction, diazotization of alkyl amines, oxidation of hydrazones, decomposition of N-nitroso compounds. Traditional transformations of diazo compounds include nucleophilic addition/substitution by using diazo compounds as the nucleophiles, ylide type reactions, dimerization or olefination, Wolff rearrangement, transition-metal-carbene or carbenoid mediated X—H insertion reactions, catalytic cyclopropanations or cyclopropenations, and the recently developed transition-metal-catalyzed carbenoid cross-coupling reactions. In addition to these classic reactions, the diazo compounds also undergo nitrogen group retaining reactions, in which the diazo moiety is incorporated into the nitrogen-containing moiety in the target molecules. This strategy has provided an efficient and selective synthetic approach towards nitrogen atom containing functional molecules, especially for the synthesis of various N-heterocyclic compounds. Among them, the enantioselective C—N bond forming reaction as well as the asymmetric N-heterocyclic scaffold construction has important synthetic value and remains great challenge to the organic chemists. Thus, nitrogen component retaining reactions of diazo compounds has opened up a superior avenue in organic synthesis. Considering about the significant importance and the great growth in the past decade of this area, this review article will focus on the nitrogen group retaining reaction of diazo compounds. According to the reaction mechanism of these transformations, this review will be divided into the following parts: diazo compounds as nucleophiles, diazo compounds as 1,3-dipoles in cycloaddition reaction, diazo compounds as electrophiles, intramolecular reactions of vinyldiazo compounds, reduction reaction, and miscellaneous transformation. We hope that this review will corroborate the practical use of this research area as a convenient and valuable synthetic strategy.

参考文献

[1] (a) Ye, T.; McKervey, M. A. Chem. Rev. 1994, 94, 1091;
(b) Zhang, Z.; Wang, J. Tetrahedron 2008, 64, 6577;
(c) Padwa, A.; Austin, D. J. Angew. Chem. Int. Ed. Engl. 1994, 33, 1797;
(d) Padwa, A.; Weingarten, M. D. Chem. Rev. 1996, 96, 223;
(e) Doyle, M. P.; Forbes, D. C. Chem. Rev. 1998, 98, 911;
(f) Padwa, A. J. Organomet. Chem. 2001, 617-618, 3;
(g) Davies, H. M. L.; Antoulinakis, E. G. J. Organomet. Chem. 2001, 617-618, 47.
(h) Timmons, D. J.; Doyle, M. P. J. Organomet. Chem. 2001, 617-618, 98.
(i) Hodgson, D. M.; Pierard, F. Y. T. M.; Stupple, P. A. Chem. Soc. Rev. 2001, 30, 50;
(j) Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861.
(k) Singh, G. S.; Mdee, L. K. Curr. Org. Chem. 2003, 7, 1821.
(l) Gois, P. M. P.; Afonso, C. A. M. Eur. J. Org. Chem. 2004, 3773.
(m) Díaz-Requejo, M. M.; Pérez, P. J. J. Organomet. Chem. 2005, 690, 5441;
(n) Fulton, J. R.; Aggarwal, V. K.; de Vicente, J. Eur. J. Org. Chem. 2005, 1479;
(o) Davies, H. M. L.; Nikolai, J. Org. Biomol. Chem. 2005, 3, 4176.
(p) Singh, G. S. Curr. Org. Synth. 2005, 2, 377.
(q) Wee, A. G. H. Curr. Org. Synth. 2006, 3, 499.
(r) Noels, A. F. Angew. Chem. Int. Ed. 2007, 46, 1208.
[2] (a) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds, Wiley-Interscience: New York, 1998.
(b) For the recent comprehensive review of diazo compounds, see: Ford, A.; Miel, H.; Ring, A.; Slattery, C. N.; Maguire, A. R.; McKervey, M. A. Chem. Rev. 2015, 115, 9981.
[3] Maas, G. Angew. Chem. Int. Ed. 2009, 48, 8186.
[4] For typical research recently developed by Chinese chemists, see: (a) Cheng, Q.; Xu, H.; Zhu, S.; Zhou, Q. Acta Chim. Sinica 2015, 73, 326 (in Chinese).(程清卿, 许唤, 朱守非, 周其林, 化学学报, 2015, 73, 326.)
(b) Tang, M.; Wu, Y.; Liu, Y.; Cai, M.; Xia, F.; Liu, S.; Hu, W. Acta Chim. Sinica 2016, 74, 54 (in Chinese).(唐敏, 吴永, 刘源, 蔡茂强, 夏飞, 刘顺英, 胡文浩, 化学学报, 2016, 74, 54.)
(c) Li, Y.; Huang, Z.; Xu, P.-F.; Zhang, Y.; Wang, J. Acta Chim. Sinica 2012, 70, 2024 (in Chinese).(李玉叶, 黄重行, 许鹏飞, 张艳, 王剑波, 化学学报, 2012, 70, 2024.)
[5] Zhang, Y.; Wang, J. Chem. Commun. 2009, 5350.
[6] Hashimoto, T.; Maruoka, K. Bull. Chem. Soc. Jpn. 2013, 86, 1217.
[7] Yao, W.; Wang, J. Org. Lett. 2003, 5, 1527.
[8] (a) Arai, S.; Hasegawa, K.; Nishida, A. Tetrahedron Lett. 2004, 45, 1023.
(b) Hasegawa, K.; Arai, S.; Nishida, A. Tetrahedron 2006, 62, 1390.
[9] (a) Likhar, P. R.; Roy, S.; Roy, M.; Subhas, M. S.; Kantam, M. L. Synlett 2008, 1283.
(b) Likhar, P. R.; Roy, S.; Roy, M.; Subhas, M. S.; Kantam, M. L. Catal. Commun. 2009, 10, 728.
[10] Trost, B. M.; Malhotra, S.; Koschker, P.; Ellerbrock, P. J. Am. Chem. Soc. 2012, 134, 2075.
[11] Uraguchi, D.; Sorimachi, K.; Terada, M. J. Am. Chem. Soc. 2005, 127, 9360.
[12] Hashimoto, T. ; Maruoka, K. J. Am. Chem. Soc. 2007, 129, 10054.
[13] Hashimoto, T.; Maruoka, K. Synthesis 2008, 3703.
[14] Hashimoto, T.; Kimura, H.; Nakatsu, H.; Maruoka, K. J. Org. Chem. 2011, 76, 6030.
[15] Doyle, M. P.; Kundu, K.; Russell, A. E. Org. Lett. 2005, 7, 5171.
[16] Kundu, K.; Doyle, M. P. Tetrahedron: Asymmetry 2006, 17, 574.
[17] Liu, Y.; Zhang, Y.; Jee, N.; Doyle, M. P. Org. Lett. 2008, 10, 1605.
[18] Zhou, L.; Doyle, M. P. Org. Lett. 2010, 12, 796.
[19] Xu, X.; Hu, W.-H.; Doyle, M. P. Angew. Chem. Int. Ed. 2011, 50, 6392.
[20] Mao, H.; Lin, A.; Shi, Y.; Mao, Z.; Zhu, X.; Li, W.; Hu, H.; Cheng, Y.; Zhu, C. Angew. Chem. Int. Ed. 2013, 52, 6288.
[21] Peng, C.; Cheng, J.; Wang, J. J. Am. Chem. Soc. 2007, 129, 8708.
[22] Ye, F.; Wang, C.; Zhang, Y.; Wang, J. Angew. Chem. Int. Ed. 2014, 53, 11625.
[23] (a) Rodriguez, J. B. Synthesis 2014, 46, 1129.
(b) Dubrovskiy, A. V.; Markina, N. A.; Larock, R. C. Org. Biomol. Chem. 2013, 11, 191.
(c) Hashimoto, T.; Maruoka, K. Org. Biomol. Chem. 2008, 6, 829.
[24] (a) Lozhkin, S. S.; Petrov, D. V.; Dokichev, V. A.; Tomilov, Y. V.; Nefedov, O. M. Chem. Heterocycl. Comp. 2009, 45, 937.
(b) Novikov, R. A.; Platonov, D. N.; Dokichev, V. A.; Tomilov, Y. V.; Nefedov, O. M. Russ. Chem. Bull. Int. Ed. 2010, 59, 984.
(c) Ovchinnikov, M. Y.; Yangirov, T. A.; Lobov, A. N.; Sultanova, R. M.; Khursan, S. L. Int. J. Chem. Kinet. 2013, 45, 499.
(d) Krishna, P. R.; Sekhar, E. R.; Mongin, F. Tetrahedron Lett. 2008, 49, 6768;
(e) Sun, H.; Wang, X.; Zhan, M.; Liu, J.; Xie, Y. Tetrahedron Lett. 2013, 54, 3846.
(f) Wang, W.; Simovic, D. D.; Di, M.; Fieber, L.; Rein, K. S. Bioorg. Med. Chem. Lett. 2013, 23, 1949.
(g) Ruano, J. L. G.; Alonso, M.; Cruz, D.; Fraile, A.; Martín, M. R.; Peromingo, M. T.; Tito, A.; Yuste, F. Tetrahedron 2008, 64, 10546.
(h) Cruz, D. C.; Yuste, F.; Martín, M. R.; Tito, A.; Ruano, J. L. G. J. Org. Chem. 2009, 74, 3820.
(i) Kissane, M.; Lawrence, S. E.; Maguire, A. R. Org. Biomol. Chem. 2010, 8, 2735.
(j) Hamadi, N. B.; Msaddek, M. C. R. Chimie 2011, 14, 997.
(k) Goulioukina, N. S.; Makukhin, N. N.; Beletskaya, I. P. Tetrahedron 2011, 67, 9535;
(l) Liu, R.; Yin, J.; Li, J.; Wu, J.; Chen, G.; Jin, Y.; Wang, J. Chin. J. Org. Chem. 2012, 32, 544 (in Chinese).(刘冉冉, 殷军港, 李家柱, 武进, 陈冠龙, 金英学, 王进军, 有机化学, 2012, 32, 544.)
(m) Yang, Z.; Wang, Z.; Xu, X.; Liu, Y.; Qi, C.; Wang, J. Chin. J. Org. Chem. 2012, 32, 2099 (in Chinese).(杨泽, 王振, 徐希森, 刘洋, 祁彩霞, 王进军, 有机化学, 2012, 32, 2099.)
(n) Xie, J.-W.; Wang, Z.; Yang, W.-J.; Kong, L.-C.; Xu, D.-C. Org. Biomol. Chem. 2009, 7, 4352;
(o) Maurer, S.; Jikyo, T.; Maas, G. Eur. J. Org. Chem. 2009, 2195;
(p) Hou, Y.; Cai, C.; Yu, G. Synlett 2016, 27, DOI: 10.1055/s-0035-1560596.
[25] (a) Gioiello, A.; Khamidullina, A.; Fulco, M. C.; Venturoni, F.; Zlotsky, S.; Pellicciari, R. Tetrahedron Lett. 2009, 50, 5978;
(b) Wang, L.; Huang, J.; Gong, X.; Wang, J. Chem. Eur. J. 2013, 19, 7555.
[26] (a) Slobodyanyuk, E. Y.; Artamonov, O. S.; Shishkin, O. V.; Mykhailiuk, P. K. Eur. J. Org. Chem. 2014, 2487;
(b) Mykhailiuk, P. K. Chem. Eur. J. 2014, 20, 4942;
(c) Artamonov, O. S.; Mykhailiuk, P. K.; Voievoda, N. M.; Volochnyuk, D. M.; Komarov, I. V. Synthesis 2010, 443;
(d) Artamonov, O. S.; Slobodyanyuk, E. Y.; Shishkin, O. V.; Komarov, I. V.; Mykhailiuk, P. K. Synthesis 2013, 45, 225;
(e) Li, T.-R.; Duan, S.-W.; Ding, W.; Liu, Y.-Y.; Chen, J.-R.; Lu, L.-Q.; Xiao, W.-J. J. Org. Chem. 2014, 79, 2296.
[27] (a) Muruganantham, R.; Namboothiri, I. J. Org. Chem. 2010, 75, 2197;
(b) Verma, D.; Mobin, S.; Namboothiri, I. N. N. J. Org. Chem. 2011, 76, 4764;
(c) Kumar, R.; Namboothiri, I. N. N. Org. Lett. 2011, 13, 4016;
(d) Kumar, R.; Nair, D.; Namboothiri, I. N. N. Tetrahedron 2014, 70, 1794;
(e) Shelke, A. M.; Suryavanshi, G. Org. Biomol. Chem. 2015, 13, 8669.
[28] (a) Suga, H.; Furihata, Y.; Sakamoto, A.; Itoh, K.; Okumura, Y.; Tsuchida, T.; Kakehi, A.; Baba, T. J. Org. Chem. 2011, 76, 7377;
(b) Gao, L.; Hwang, G.-S.; Lee, M. Y.; Ryu, D. H. Chem. Commun. 2009, 5460;
(c) Lee, S. I.; Kim, K. E.; Hwang, G.-S.; Ryu, D. H. Org. Biomol. Chem. 2015, 13, 2745;
(d) Du, T.; Du, F.; Ning, Y.; Peng, Y. Org. Lett. 2015, 17, 1308.
[29] (a) Mohanan, K.; Martin, A. R.; Toupet, L.; Smietana, M.; Vasseur, J.-J. Angew. Chem. Int. Ed. 2010, 49, 3196;
(b) Martin, A. R.; Mohanan, K.; Toupet, L.; Vasseur, J.-J.; Smietana, M. Eur. J. Org. Chem. 2011, 3184.
[30] (a) He, S.; Chen, L.; Niu, Y.-N.; Wu, L.-Y.; Liang, Y.-M. Tetrahedron Lett. 2009, 50, 2443;
(b) Cheung, K. M. J.; Reynisson, J.; McDonald, E. Tetrahedron Lett. 2010, 51, 5915;
(c) McGrath, N. A.; Raines, R. T. Chem. Sci. 2012, 3, 3237.
(d) Pramanik, M. M. D.; Kant, R.; Rastogi, N. Tetrahedron 2014, 70, 5214;
(e) Vuluga, D.; Legros, J.; Crousse, B.; Bonnet-Delpon, D. Green Chem. 2009, 11, 156;
(f) Friscourt, F.; Fahrni, C. J.; Boons, G.-J. Chem. Eur. J. 2015, 21, 13996.
[31] Li, F.; Nie, J.; Sun, L.; Zheng, Y.; Ma, J.-A. Angew. Chem. Int. Ed. 2013, 52, 6255.
[32] (a) Mykhailiuk, P. K. Angew. Chem. Int. Ed. 2015, 54, 6558;
(b) Mykhailiuk, P. K. Org. Biomol. Chem. 2015, 13, 3438;
(c) Mykhailiuk, P. K. Eur. J. Org. Chem. 2015, 7235.
[33] (a) Shoji, Y.; Hari, Y.; Aoyama, T. Tetrahedron Lett. 2004, 45, 1769;
(b) Jin, T.; Yamamoto, Y. Angew. Chem. Int. Ed. 2007, 46, 3387;
(c) Liu, Z.; Shi, F.; Martinez, P. D. G.; Raminelli, C.; Larock, R. C. J. Org. Chem. 2008, 73, 219;.
(d) Hari, Y.; Sone, R.; Aoyama, T. Org. Biomol. Chem. 2009, 7, 2804;
(e) Wang, C.-D.; Liu, R.-S. Org. Biomol. Chem. 2012, 10, 8948;
(f) Li, P.; Zhao, J.; Wu, C.; Larock, R. C.; Shi, F. Org. Lett. 2011, 13, 3340;
(g) Li, P.; Wu, C.; Zhao, J.; Rogness, D. C.; Shi, F. J. Org. Chem. 2012, 77, 3149.
[34] (a) Pérez-Aguilar, M. C.; Valdés, C. Angew. Chem. Int. Ed. 2013, 52, 7219;
(b) Sha, Q.; Wei, Y. Synthesis 2013, 45, 413;
(c) Merchant, R. R.; Allwood, D. M.; Blakemore, D. C.; Ley, S. V. J. Org. Chem. 2014, 79, 8800;
(d) Pérez-Aguilar, M. C.; Valdés, C. Angew. Chem. Int. Ed. 2015, 54, 13729.
[35] (a) Kang, T.; Kim, W.-Y.; Yoon, Y.; Kim, B. G.; Lee, H.-Y. J. Am. Chem. Soc. 2011, 133, 18050;
(b) Qiao, Y.; Han, K.-L. Org. Biomol. Chem. 2014, 12, 1220;
(c) Lee, H.-Y. Acc. Chem. Res. 2015, 48, 2308.
[36] Zhang, F.-G.; Wei, Y.; Yi, Y.-P.; Nie, J.; Ma, J.-A. Org. Lett. 2014, 16, 3122.
[37] (a) Dullweber, F.; Montforts, F.-P. Synlett 2008, 3213;
(b) Mlostoń, G.; Urbaniak, K.; Linden, A.; Heimgartner, H. Tetrahedron 2009, 65, 8191;
(c) Assadi, N.; Pogodin, S.; Agranat, I. Eur. J. Org. Chem. 2011, 6773;
(d) Nikolaev, V. A.; Ivanov, A. V.; Shakhmin, A. A.; Sieler, J.; Rodina, L. L. Tetrahedron Lett. 2012, 53, 3095;
(e) Nikolaev, V. A.; Ivanov, A. V.; Rodina, L. L.; Mlostoń, G. Beilstein J. Org. Chem. 2013, 9, 2751.
[38] Torres-Alacan, J.; Sander, W. J. Org. Chem. 2008, 73, 7118.
[39] Chen, J.-H.; Liu, S.-R.; Chen, K. Chem. Asian J. 2010, 5, 328.
[40] Chen, Z.; Fan, S.-Q.; Zheng, Y.; Ma, J.-A. Chem. Commun. 2015, 51, 16545.
[41] Wang, S.; Yang, L.-J.; Zeng, J.-L.; Zheng, Y.; Ma, J.-A. Org. Chem. Front. 2015, 2, 1468.
[42] (a) Saka?, M. N.; Gakovi?, A. R.; Csanádi, J. J.; Djurendi?, E. A.; Klisuri?, O.; Koji?, V.; Bogdanovi?, G.; Gaši, K. M. P. Tetrahedron Lett. 2009, 50, 4107.
(b) Mani, N. S.; Fitzgerald, A. E. J. Org. Chem. 2014, 79, 8889.
[43] (a) Supurgibekov, M. B.; Hennig, L.; Schulze, B.; Nikolaev, V. A. Russ. J. Org. Chem. 2008, 44, 1840;
(b) Supurgibekov, M. B.; Zakharova, V. M.; Sieler, J.; Nikolaev, V. A. Tetrahedron Lett. 2011, 52, 341;
(c) Muthusamy, S.; Srinivasan, P. Tetrahedron Lett. 2009, 50, 1331;
(d) Bel Abed, H.; Mammoliti, O.; Van Lommen, G.; Herdewijn, P. Tetrahedron Lett. 2012, 53, 6489;
(e) Bel Abed, H.; Mammoliti, O.; Bande, O.; Van Lommen, G.; Herdewijn, P. J. Org. Chem. 2013, 78, 7845;
(f) Bel Abed, H.; Mammoliti, O.; Bande, O.; Van Lommen, G.; Herdewijn, P. Org. Biomol. Chem. 2014, 12, 7159;
(g) Bel Abed, H.; Bande, O.; Mammoliti, O.; Van Lommen, G.; Herdewijn, P. Tetrahedron Lett. 2013, 54, 7056;
(h) Nikolaev, V. A.; Cantillo, D.; Kappe, C. O.; Medvedev, J. J.; Prakash, G. K. S.; Supurgibekov, M. B. Chem. Eur. J. 2016, 22, 174.
[44] Mao, H.; Lin, A.; Tang, Z.; Hu, H.; Zhu, C.; Cheng, Y. Chem. Eur. J. 2014, 20, 2454.
[45] (a) Yasui, E.; Wada, M.; Takamura, N. Tetrahedron Lett. 2009, 50, 4762;
(b) Yasui, E.; Wada, M.; Takamura, N. Tetrahedron 2009, 65, 461;
(c) Yasui, E.; Wada, M.; Nagumo, S.; Takamura, N. Tetrahedron 2013, 69, 4325.
[46] (a) van Berkel, S. S.; Brauch, S.; Gabriel, L.; Henze, M.; Stark, S.; Vasilev, D.; Wessjohann, L. A.; Abbas, M.; Westermann, B. Angew. Chem. Int. Ed. 2012, 51, 5343;
(b) Kuznetsov, A.; Gulevich, A. V.; Wink, D. J.; Gevorgyan, V. Angew. Chem. Int. Ed. 2014, 53, 9021.
[47] Li, L.; Chen, J.-J.; Li, Y.-J.; Bu, X.-B.; Liu, Q.; Zhao, Y.-L. Angew. Chem. Int. Ed. 2015, 54, 12107.
[48] Li, W.; Liu, X.; Hao, X.; Hu, X.; Chu, Y.; Cao, W.; Qin, S.; Hu, C.; Lin, L.; Feng, X. J. Am. Chem. Soc. 2011, 133, 15268.
[49] (a) Santos, F. M. F.; Rosa, J. N.; André, V.; Duarte, M. T.; Veiros, L. F.; Gois, P. M. P. Org. Lett. 2013, 15, 1760;
(b) António, J. P. M.; Frade, R. F. M.; Santos, F. M. F.; Coelho, J. A. S.; Afonso, C. A. M.; Gois, P. M. P.; Trindade, A. F. RSC Adv. 2014, 4, 29352.
[50] Mei, L.-Y.; Tang, X.-Y.; Shi, M. Chem. Eur. J. 2014, 20, 13136.
[51] Zheng, J.; Qi, J.; Cui, S. Org. Lett. 2016, 18, 128.
[52] Babinski, D. J.; Aguilar, H. R.; Still, R.; Frantz, D. E. J. Org. Chem. 2011, 76, 5915.
[53] Babinski, D. J.; Bao, X.; El Arba, M.; Chen, B.; Hrovat, D. A.; Borden, W. T.; Frantz, D. E. J. Am. Chem. Soc. 2012, 134, 16139.
[54] Guo, H.; Zhang, D.; Zhu, C.; Li, J.; Xu, G.; Sun, J. Org. Lett. 2014, 16, 3110.
[55] Xu, G.; Zhu, C.; Gu, W.; Li, J.; Sun, J. Angew. Chem. Int. Ed. 2015, 54, 883.
[56] Jordão, A. K.; Afonso, P. P.; Ferreira, V. F.; de Souza, M. C. B. V.; Almeida, M. C. B.; Beltrame, C. O.; Paiva, D. P.; Wardell, S. M. S. V.; Wardell, J. L.; Tiekink, E. R. T.; Damaso, C. R.; Cunha, A. C. Eur. J. Med. Chem. 2009, 44, 3777.
[57] Campos, V. R.; Abreu, P. A.; Castro, H. C.; Rodrigues, C. R.; Jordão, A. K.; Ferreira, V. F.; de Souza, M. C. B. V.; da C. Santos, F.; Moura, L. A.; Domingos, T. S.; Carvalho, C. Sanchez, E. F.; Fuly, A. L.; Cunha, A. C. Bioorg. Med. Chem. 2009, 17, 7429.
[58] Wang, Z.; Bi, X.; Liao, P.; Zhang, R.; Liang, Y.; Dong, D. Chem. Commun. 2012, 48, 7076.
[59] Deng, G.; Wang, F.; Lu, S.; Cheng, B. Org. Lett. 2015, 17, 4651.
[60] Zhou, L.; Liu, Z.; Liu, Y.; Zhang, Y.; Wang, J. Tetrahedron 2013, 69, 6083.
[61] González, A.; Pérez, D.; Puig, C.; Ryder, H.; Sanahuja, J.; Solé, L.; Bach, J. Tetrahedron Lett. 2009, 50, 2750.
[62] Hasegawa, K.; Kimura, N.; Arai, S.; Nishida, A. J. Org. Chem. 2008, 73, 6363.
[63] Barluenga, J.; Lonzi, G.; Riesgo, L.; Tomás, M.; López, L. A. J. Am. Chem. Soc. 2011, 133, 18138.
[64] Qiu, L.; Huang, D.; Xu, G.; Dai, Z.; Sun, J. Org. Lett. 2015, 17, 1810.

文章导航

/