二氧化硫分子通过增强二次成核促进纤维的生长:基于分子动力学的模拟研究
收稿日期: 2016-05-03
网络出版日期: 2016-08-10
基金资助
项目受国家自然科学基金(Nos. 11334004,11174133,81421091)和国家科技部973项目(No. 2013CB834100)资助.
Sulfur Dioxide Promotes the Formation of Amyloid Fibrils through Enhanced Secondary Nucleation: A Molecular Dynamics Study
Received date: 2016-05-03
Online published: 2016-08-10
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 11334004, 11174133, 81421091) and the National Basic Research Program of China (No. 2013CB834100).
空气污染是一种常见的现象. 空气污染物是诱发各类疾病的重要因素之一. 以二氧化硫分子为代表,研究了它与Aβ17~42原纤维之间的相互作用. 伞形抽样模拟表明,二氧化硫分子的引入减少了纤维的解离自由能. 分析各氨基酸残基结合二氧化硫的频数得知,二氧化硫分子更容易动态地结合到疏水性氨基酸残基的骨架上,同时也容易结合到带电的氨基酸残基上进而削弱盐桥相互作用,但是对这些相互作用的削弱是非常微小的,不足以破坏原纤维的结构. 通过非线性主方程分析,我们发现二氧化硫分子加速了Aβ17~42二次成核过程,同时缩短了迟滞时间而加速纤维的聚集过程. 通过这些计算,我们定量地揭示了空气污染物与蛋白质相互作用的特征,期望我们的结果为当今社会评估污染物的健康效应提供宝贵的参考信息.
康文斌 , 夏耘 , 王骏 , 王炜 . 二氧化硫分子通过增强二次成核促进纤维的生长:基于分子动力学的模拟研究[J]. 化学学报, 2016 , 74(8) : 694 -702 . DOI: 10.6023/A16050216
Air pollution is a common phenomenon in developing countries, and pollutants are suggested to be essential reasons to produce various diseases, such as cancers, neuro-degenerative diseases and so on. In present work, the effects of sulfur dioxide on the dissociation of Aβ17~42 peptides from core region of Aβ fibril were studied with umbrella sampling method. It is found that the free energy penalty related to the dissociation processes would decrease for larger concentrations of sulfur dioxide. The detailed interactions between peptides and sulfur dioxide are analyzed based on contact statistics. It is suggested that the destabilization of the Aβ fibril is realized by the binding of sulfur dioxide with the peptide backbone as well as the side chains of charged residues, which results in the decrease of hydrophobic interaction and blockage of the electrostatic interactions between charged residues. Furthermore, the positive contribution of such a marginal destabilization on the growth of fibril is also discussed with a nonlinear master equation, which is consistent with the medical knowledge. Through these computations, we disclose the characteristics of the interactions between air pollutants and protein molecules. We expect that these results could help to assess the effect of air pollutants on human health.
[1] Dominici, F.; Greenstone, M.; Sunstein, C. Science 2014, 344, 257.
[2] Wang, Y.; Hu, M. Acta Chim. Sinica 2016, 74, 356 (in Chinese). (王玉珏, 胡敏, 化学学报, 2016, 74, 356.)
[3] Guo, S.; Hu, M.; Guo, Q.; Shang, D. Acta Chim. Sinica 2014, 72, 658 (in Chinese). (郭松, 胡敏, 郭庆丰, 尚冬杰, 化学学报, 2014, 72, 658.)
[4] Guo, S.; Hu, M.; Shang, D.; Guo, Q. Acta Chim. Sinica 2014, 72, 145 (in Chinese). (郭松, 胡敏, 尚冬杰, 郭庆丰, 化学学报, 2014, 72, 145.)
[5] Li, J.; Meng, Z. Asian J. Ecotoxicol. 2012, 7, 133 (in Chinese). (李君灵, 孟紫强, 生态毒理学报, 2012, 7, 133.)
[6] Yao, G.; Sang, N. Chin. J. Appl. Environ. Biol. 2015, 21, 372 (in Chinese). (姚高毅, 桑楠, 应用与环境生物学报, 2015, 21, 372.)
[7] Yu, F.; Li, D.; Xie, M. Ecol. Sci. 2016, 35, 195 (in Chinese). (俞发荣, 李登楼, 谢明仁, 生态科学, 2016, 35, 195.)
[8] Ma, Y.; Wang, J. Chin. J. Publ. Health 2011, 27, 800 (in Chinese). (马艳琴, 王俊东, 中国公共卫生, 2011, 27, 800).
[9] Wu, Y.; Meng, Q.; Wei, D.; Bai, J. Chin. Bull. Life Sci. 2011, 23, 784 (in Chinese). (吴远双, 孟庆雄, 魏大巧, 白洁, 生命科学, 2011, 23, 784.)
[10] Zhao, D.; Tang, W.; Wang, W. J. Int. Neurology and Neurosurgery 2014, 41, 363 (in Chinese). (赵典, 唐伟, 王威, 国际神经病学神经外科学杂志, 2014, 41, 363.)
[11] Zuo, G. e-Sci. Technol. & Appl. 2011, 2, 63 (in Chinese). (左光宏, 科研信息化技术与应用, 2011, 2, 63.)
[12] Du, J.; Ge, C. Chin. Sci. Bull. 2015, 60, 2977 (in Chinese). (杜江锋, 葛翠翠, 科学通报, 2015, 60, 2977.)
[13] Wang, G.; Wang, P. Sci. Technol. Rev. 2014, 32, 72 (in Chinese). (王庚辰, 王普才, 科技导报, 2014, 32, 72.)
[14] Yang, W.; Bai, Z.; Zhou, X. J. Environ. Health 2015, 32, 753 (in Chinese). (杨伟, 白志鹏, 周晓华, 环境与健康杂志, 2015, 32, 753.)
[15] Li, J.; Meng, Z. Nitric Oxide 2009, 20, 166.
[16] Wang, X.; Jin, H.; Tang, C. Eur. J. Pharmacol. 2011, 670, 1.
[17] Liu, D.; Huang, Y.; Bu, D. Cell Death Dis. 2014, 5, e1251.
[18] Huang, Y.; Shen, Z.; Chen, Q. Sci. Rep. 2016, 6, 19503.
[19] Duff, K.; Eckman, C.; Zehr, C. Nature 1996, 383, 710.
[20] Cook, D.; Forman, M.; Sung, J. Nat. Med. 1997, 3, 1021.
[21] Knowles, T.; Waudby, C.; Devlin, G. Science 2009, 326, 1533.
[22] Bloom, G. JAMA Neurology 2014, 71, 505.
[23] Xi, W.; Li, W.; Wang, W. J. Phys. Chem. B 2012, 116, 7398.
[24] Xi, W.; Li, W.; Wang, W. Chin. Phys. Lett. 2012, 29, 088702.
[25] Li, W.; Zhang, J.; Su, Y.; Wang, J.; Qin, M.; Wang, W. J. Phys. Chem. B 2007, 111, 13814.
[26] Lührs, T.; Ritter, C.; Adrian, M. Proc. Natl. Acad. Sci. 2005, 102, 17342.
[27] Ribeiro, M. J. Phys. Chem. B 2006, 110, 8789.
[28] Moin, S.; Lim, L.; Hofer, T. Inorg. Chem. 2011, 50, 3379.
[29] Berendsen, H.; Postma, J.; Gunsteren, W. Intermolecular Forces, Springer Netherlands, 1981, pp. 331~342.
[30] Ketko, M.; Kamath, G.; Potoff, J. J. Phys. Chem. B 2011, 115, 4949.
[31] Li, Z.; Guo, X.; Wang, H. Acta Phys.-Chim. Sinica 2009, 25, 6 (in Chinese). (李振泉, 郭新利, 王红艳, 物理化学学报, 2009, 25, 6.)
[32] He, Z.; Zhou, J. Acta Chim. Sinica 2011, 69, 2901 (in Chinese). (贺仲金, 周健, 化学学报, 2011, 69, 2901.)
[33] Izrailev, S.; Stepaniants, S.; Isralewitz, B. Computational Molecular Dynamics: Challenges, Methods, Ideas, Springer, Berlin Heidelberg, 1999, pp. 39~65.
[34] Park, S.; Khalili-Araghi, F.; Tajkhorshid, E. J. Chem. Phys. 2003, 119, 3559.
[35] Justin, A.; David, R. J. Phys. Chem. B 2010, 114, 1652.
[36] Park, S.; Schulten, K. J. Chem. Phys. 2004, 120, 5946.
[37] Patey, G.; Valleau, J. Chem. Phys. Lett. 1973, 21, 297.
[38] Torrie, G.; Valleau, J. Chem. Phys. Lett. 1974, 28, 578.
[39] Torrie, G.; Valleau, J. J. Comput. Phys. 1977, 23, 187.
[40] Kumar, S.; Rosenberg, J.; Bouzida, D. J. Comput. Chem. 1992, 13, 1011.
[41] Kutzner, C.; Páll, S.; Fechner, M.; Esztermann, A.; de Groot, B. L.; Grubmuller, H. J. Comput. Chem. 2015, 36, 1990.
[42] Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98, 10089.
[43] Essmann, U.; Perera, L.; Berkowitz, M.; Darden, T.; Lee, H.; Pedersen, L. J. Chem. Phys. 1995, 103, 8577.
[44] Hess, B.; Bekker, H.; Berendsen, H. J. Comput. Chem. 1997, 18, 1463.
[45] Walton, E.; Lee, S.; Van, V. Biophys. J. 2008, 94, 2621.
[46] Calderón-Garcidueñas, L.; Mora-Tiscareño, A.; Franco-Lira, M. J. Alzheimers Dis. 2015, 45, 757.
[47] Calderón-Garcidueñas, L.; Vojdani, A.; Blaurock-Busch, E. J. Alzheimers Dis. 2015, 43, 1039.
[48] Li, P.; Yan, R.; Yu, S. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 2739.
[49] Radic, S.; Nedumpully-Govindan, P.; Chen, R.; Salonen, E.; Brown, J. M.; Ke, P. C.; Ding, F. Nanoscale 2014, 6, 8340.
[50] Truong, L. Ph.D. Dissertation, Oregon State University, Oregon, 2012.
[51] Violi, A.; Venkatnathan, A. J. Chem. Phys. 2006, 125, 054302.
[52] Kim, H.; Shin, Y. J. Am. Chem. Soc. 2010, 132, 2254.
[53] Risom, L.; Møller, P.; Loft, S. Mutat. Res. 2005, 592, 119.
/
| 〈 |
|
〉 |