综述

石墨烯和氧化石墨烯的表面功能化改性

  • 黄国家 ,
  • 陈志刚 ,
  • 李茂东 ,
  • 杨波 ,
  • 辛明亮 ,
  • 李仕平 ,
  • 尹宗杰
展开
  • 广州特种承压设备检测研究院 广东省质量监督石墨烯及功能产品检验站 广州 510663
黄国家,男,博士.主要从事新型聚合物材料的合成与改性应用研究.以第一作者在Journal of Materials Chemistry,Applied Physics Letters,Polymer Degradation and Stability等杂志发表SCI收录论文4篇.曾参研国家"973"计划项目和国家自然科学基金项目等6项;陈志刚,男,高级工程师.出版专著1部,制修订行业标准3项,省市地方标准5项,获得发明专利授权5件,实用新型专利授权14件.主持过多项国家质检总局科技项目、广东省科技厅应用型专项等,获省部级科技奖励2项;李茂东,男,教授级高级工程师,广州市"121"梯队人才,2012年度"广东省劳动模范".出版专著2部,获得国家发明专利授权3件,实用新型和外观专利授权18件,发表专业技术论文60余篇,负责起草国家和省市地方标准近40项;杨波,男,博士,高级工程师.发表论文20余篇,其中SCI收录5篇,国际会议论文4篇,获得发明专利授权3件,实用新型专利授权8件.曾参与国家"973"计划项目、国家"863"计划重大项目、中科院重大科研装备研制项目、广东省科技厅应用型专项等;辛明亮,男,博士.主要从事高分子材料的改性研究.在Journal of Thermal Analysis and Calorimetry、Polymer Bulletin等国际杂志以第一作者发表SCI收录论文5篇,中文核心期刊4篇.

收稿日期: 2016-07-24

  网络出版日期: 2016-10-20

基金资助

项目受广东省科技计划项目(Nos.2015B020240002,2015A030401059)资助.

Surface Functional Modification of Graphene and Graphene Oxide

  • Huang Guojia ,
  • Chen Zhigang ,
  • Li Maodong ,
  • Yang Bo ,
  • Xin Mingliang ,
  • Li Shiping ,
  • Yin Zongjie
Expand
  • The Quality Supervision & Inspection Station of Graphene & Its Functional Products of Guangdong Province, Guangzhou Special Pressure Equipment Inspection and Research Institute, Guangzhou 510663, China

Received date: 2016-07-24

  Online published: 2016-10-20

Supported by

Project supported by the Science and Technology Planning Project of Guangdong Province (Nos. 2015B020240002, 2015A030401059).

摘要

石墨烯和氧化石墨烯由于特殊的电子、光学、力学性能已成为当今科学研究的热点.重点综述了近年来石墨烯和氧化石墨烯的表面功能化改性研究进展.首先介绍了石墨烯、氧化石墨烯的基本结构与性质.然后将表面功能化分为非共价键结合改性、共价键结合改性和元素掺杂改性.非共价键结合的功能化改性分为四类:π-π键相互作用、氢键作用、离子键作用以及静电作用.共价键结合的功能化改性分为四类:碳骨架功能化、羟基功能化、羧基功能化和环氧基功能化.元素掺杂改性分为N、B、P等不同元素的掺杂功能化.总结了石墨烯、氧化石墨烯基体与改性分子的相互作用和反应类型,以及改性产物的性能与应用.最后对石墨烯和氧化石墨烯在表面功能化改性方面的发展前景作了展望和预测.

本文引用格式

黄国家 , 陈志刚 , 李茂东 , 杨波 , 辛明亮 , 李仕平 , 尹宗杰 . 石墨烯和氧化石墨烯的表面功能化改性[J]. 化学学报, 2016 , 74(10) : 789 -799 . DOI: 10.6023/A16070360

Abstract

Graphene and graphene oxide have attracted tremendous interest over the past decade due to their unique electronic, optical, mechanical, and chemical properties. Pristine graphene is desirable for applications that require a high electrical conductivity, while many other applications require modified or functionalized forms such as graphene oxide due to its good dispersibility in various solvents. Surface functional modification of graphene and graphene oxide is of crucial importance for their broad applications. Functionalization of graphene enables this material to be processed by solvent assisted techniques, such as layer-by-layer assembly, filtration. It also prevents the agglomeration of single layer graphene and maintains the inherent properties. Structurally modifying graphene and graphene oxide through chemical functionalization reveals the numerous possibilities for tuning its structure. Several chemical and physical functionalization methods have been explored to improve the stabilization and modification of graphene. This review focuses on the surface functional modification of graphene and graphene oxide. The preparation method, basic structure and properties of graphene and graphene oxide were briefly described firstly. On the one hand, in the light of bonding characteristic, the surface functionalization of graphene and graphene oxide is divided into non-covalent binding modification, covalent binding modification and elemental doping. On the other hand, non-covalent functionalization contains four categories: π-π stacking, hydrogen bonding, ionic bonding effect and electrostatic interaction. Meanwhile, covalently functionalization includes four categories: carbon skeleton modification, hydroxy modification, carboxy modification and epoxy group modification due to the reactive functional groups. Doping functionalization consists of N, B, P and other different elements. According to the classification of surface structure characteristics, selected typical case has described the functional modification process in detail. The properties and application prospects of the modified products are also summarized. Finally, current challenges and future research directions are also presented in terms of surface functional modification for graphene and graphene oxide.

参考文献

[1] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. Science 2004, 306, 666.
[2] Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Science 2008, 321, 385.
[3] Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8, 902.
[4] Orlita, M.; Faugeras, C.; Plochocka, P.; Neugebauer, P.; Martinez, G.; Maude, D. K.; Barra, A. L.; Sprinkle, M.; Berger, C.; de Heer, W. A.; Potemski, M. Phys. Rev. Lett. 2008, 101, 267601.
[5] Kong, L.; Zhou, X.; Fan, S.; Li, Z.; Gu, Z. Acta Chim. Sinica 2016, 74, 620. (孔丽娟, 周晓燕, 范赛英, 李在均, 顾志国, 化学学报, 2016, 74, 620.)
[6] Stoller, M. D.; Park, S. J.; Zhu, Y. W.; An, J. H.; Ruoff, R. S. Nano Lett. 2008, 8, 3498.
[7] Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Science 2008, 320, 1308.
[8] Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Nano Lett. 2009, 9, 30.
[9] Kuilla, T.; Bhadra, S.; Yao, D.; Kim, N. H.; Bose, S.; Lee, J. H. Prog. Polym. Sci. 2010, 35, 1350.
[10] Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Nature 2006, 442, 282.
[11] Dai, J.; Lang, M. Acta Chim. Sinica 2012, 70(11), 1237. (戴静, 郎美东, 化学学报, 2012, 70(11), 1237.)
[12] Zhang, S. Acta Chim. Sinica 2012, 70(12), 1394. (张树鹏, 化学学报, 2012, 70(12), 1394.)
[13] Heo, J.; Oh, J. W.; Ahn, H. I.; Lee, S. B.; Cho, S. E.; Kim, M. R.; Lee, J. K.; Kim, N. Synth. Met. 2010, 160, 2143.
[14] Li, Y.; Hu, Y.; Zhao, Y.; Shi, G. Q.; Deng, L. E.; Hou, Y. B.; Qu, L. T. Adv. Mater. 2011, 23, 776.
[15] Xie, W.-J.; Fu, Y.-Y.; Ma, H.; Zhang, M.; Fan, L.-Z. Acta Chim. Sinica 2012, 70, 2169. (谢文菁, 傅英懿, 马红, 张沫, 范楼珍, 化学学报, 2012, 70, 2169.)
[16] Shi, X.; Gu, W.; Peng, W.; Li, B.; Chen, N.; Zhao, K.; Xian, Y. ACS Appl. Mater. Interf. 2014, 6, 2568.
[17] Ba, H.; Podila, S.; Liu, Y.; Mua, X.; Nhuta, J. M.; Papaefthimiou, V.; Zafeiratos, S.; Granger, P.; Huu, C. Catal. Today 2015, 249, 167.
[18] Li, Y.; Wang, H.; Xie, L.; Liang, Y.; Hong, G.; Dai, H. J. Am. Chem. Soc. 2011, 133, 7296.
[19] Zhang, W.; Guo, Z.; Huang, D.; Liu, Z.; Guo, X.; Zhong, H. Biomaterials 2011, 32, 8555.
[20] Weaver, C.; Larosa, J.; Luo, X.; Cui, X. ACS Nano 2014, 8, 1834.
[21] Zhang, L.; Xia, J.; Zhao, Q.; Liu, L.; Zhang, Z. Small 2010, 6, 537.
[22] Dryer, D.; Park, S.; Bielawski, C. W.; Ruoff, R. S. Chem. Soc. Rev. 2010, 39, 229.
[23] Park, S.; Hu, Y.; Hwang, J. O.; Lee, E. S.; Casabianca, L. B.; Cai, W.; Potts, J. R.; Ha, H. W.; Chen, S.; Oh, J.; Kim, S. O.; Kim, Y.; Ishii, Y.; Ruoff, R. Nat. Commun. 2012, 3, 638.
[24] Hunter, C. A.; Lawson, K. R.; Perkins, C.; Urch, C. J. J. Chem. Soc. Perkin Trans. 2001, 2, 651.
[25] Georgakilas, V.; Tiwari, J. N.; Kemp, K. C.; Perman, J. A.; Bourlinos, A. B.; Kim, K. S.; Zboril, R. Chem. Rev. 2016, 116(9), 5464.
[26] Kuila, T.; Bose, S.; Mishra, A. K.; Khanra, P.; Kim, N. H.; Lee, J. H. Prog. Mater. Sci. 2012, 57(7), 1061.
[27] Georgakilas, V.; Otyepka, M.; Bourlinos, A. B.; Chandra, V.; Kim, N.; Kemp, K. C. Chem. Rev. 2012, 112(11), 6156.
[28] Bai, H.; Li, C.; Shi, G. Adv. Mater. 2011, 23, 1089.
[29] Zhou, L.; Zhang, L.; Liao, L.; Yang, M.; Xie, Q.; Peng, H.; Liu, Z.; Liu, Z. Acta Chim. Sinica 2014, 72(3), 289. (周琳, 张黎明, 廖磊, 杨明媚, 谢芹, 彭海琳, 刘志荣, 刘忠范, 化学学报, 2014, 72(3), 289.)
[30] Yu, X.; Sheng, K.; Chen, J.; Li, C.; Shi, G. Acta Chim. Sinica 2014, 72, 319. (于小雯, 盛凯旋, 陈骥, 李春, 石高全, 化学学报, 2014, 72, 319.)
[31] Lei, Z.; Zhang, J.; Zhang, L. L.; Kumar, N. A.; Zhao, X. S. Energy Environ. Sci. 2016, 9(6), 1891.
[32] Wen, L.; Liu, C.; Song, R.; Luo, H.; Shi, Y.; Li, F.; Cheng, H. Acta Chim. Sinica 2014, 72(3), 333. (闻雷, 刘成名, 宋仁升, 罗洪泽, 石颖, 李峰, 成会明, 化学学报, 2014, 72(3), 333.)
[33] Szabó, T.; Berkesi, O.; Forgó, P.; Josepovits, K.; Sanakis, Y.; Petridis, D.; Dékány, I. Chem. Mater. 2006, 18, 2740.
[34] Mkhoyan, K. A.; Contryman, A. W.; Silcox, J.; Stewart, D. A.; Eda, G.; Mattevi, C.; Miller, S.; Chhowalla, M. Nano Lett. 2009, 9, 1058.
[35] Tang, C.; Wu, J.; Wan, Y.; Zhang, Z.; Kang, J.; Xiang, Y.; Zhu, W. Acta Chim. Sinica 2015, 73, 1189. (唐春梅, 邬佳仁, 万一民, 张振俊, 康静, 向圆圆, 朱卫华, 化学学报, 2015, 73, 1189.)
[36] Mayorov, A. S.; Gorbachev, R. V.; Morozov, S. V.; Britnell, L.; Jalil, R.; Ponomarenko, L. A.; Blake, P.; Novoselov, K. S.; Watanabe, K.; Taniguchi, T.; Geim, A. K. Nano Lett. 2011, 11, 2396.
[37] Gao, W.; Alemany, L. B.; Ci, L.; Ajayan, P. M. Nat. Chem. 2009, 1(5), 403.
[38] Gómez-Navarro, C.; Weitz, R. T.; Bittner, A. M.; Scolari, M.; Mews, A.; Burghard, M.; Kern, K. Nano Lett. 2007, 7(11), 3499.
[39] Moon, I. K.; Lee, J.; Ruoff, R. S.; Lee, H. Nat. Commun. 2010, 1(6), 73.
[40] Liu, L.; Zhang, J.; Zhao, J.; Liu, F. Nanoscale 2012, 4(19), 5910.
[41] Suk, J. W.; Piner, R. D.; An, J.; Ruoff, R. S. ACS Nano 2010, 4(11), 6557.
[42] Gómez-Navarro, C.; Burghard, M.; Kern, K. Nano Lett. 2008, 8(7), 2045.
[43] Lin, Y.; Guo, X. Acta Chim. Sinica 2014, 72, 277. (林源为, 郭雪峰, 化学学报, 2014, 72, 277.)
[44] Guo, Y.; Li, W.; Zheng, M.; Huang, Y. Acta Chim. Sinica 2014, 72, 713. (郭颖, 李午戊, 郑敏燕, 黄怡, 化学学报, 2014, 72, 713.)
[45] Georgakilas, V.; Otyepka, M.; Bourlinos, A. B.; Chandra, V.; Kim, N.; Kemp, K. C.; Hobza, P.; Zboril, R.; Kim, K. S. Chem. Rev. 2012, 112, 6156.
[46] Kozlov, S. M.; Vines, F.; Gorling, A. Carbon 2012, 50, 2482.
[47] Xu, Y.; Bai, H.; Lu, G.; Li, C.; Shi, G. J. Am. Chem. Soc. 2008, 130(18), 5856.
[48] Bai, H.; Xu, Y.; Zhao, L.; Li, C.; Shi, G. Chem. Commun. 2009, 13, 1667.
[49] Sheng, K.; Xu, Y.; Li, C.; Shi, G. New Carbon Mater. 2011, 26(1), 9.
[50] Hou, C.; Huang, T.; Wang, H.; Yu, H.; Zhang, Q.; Li, Y. Sci. Rep. 2013, 3, 3138.
[51] Lee, D. W.; Kim, T.; Lee, M. Chem. Commun. 2011, 47, 8259.
[52] Su, Q.; Pang, S.; Alijani, V.; Li, C.; Feng, X.; Mullen, K. Adv. Mater. 2009, 21, 3191.
[53] Yang, X.; Zhang, X.; Liu, Z.; Ma, Y.; Huang, Y.; Chen, Y. J. Phys. Chem.C 2008, 112(45), 17554.
[54] Patil, A. J.; Vickery, J. L.; Scott, T. B.; Mann, S. Adv. Mater. 2009, 21, 3159.
[55] Chang, H. X.; Wang, G. F.; Yang, A.; Tao, X. M.; Liu, X. Q.; Shen, Y. D.; Zheng, Z. J. Adv. Funct. Mater. 2010, 20, 2893.
[56] Valles, C.; Drummond, C.; Saadaoui, H.; Furtado, C. A.; He, M.; Roubeau, O.; Ortolani, L.; Monthioux, M.; Penicaud, A. J. Am. Chem. Soc. 2008, 130, 15802.
[57] Wu, Q.; Xu, Y.; Yao, Z.; Liu, A.; Shi, G. ACS Nano 2010, 4(4), 1963.
[58] Li, D.; Muller, M.; GiljE, S.; Kaner, R.; Wallace, G. Nat. Nanotech. 2008, 3, 101.
[59] Lerf, A.; He, H. Y.; Forster, M.; Klinowski, J. J. Phys. Chem. B 1998, 102, 4477.
[60] Chua, C. K.; Pumera, K. Chem. Soc. Rev. 2013, 42, 3222.
[61] Sinitskii, A.; Dimiev, A.; Corley, D. A.; Fursina, A. A.; Ko-synkin, D. V.; Tour, J. M. ACS Nano 2010, 4(4), 1949.
[62] Xia, Z.; Leonardi, F.; Gobbi, M.; Liu, Y.; Bellani, V.; Liscio, A.; Kovtun, A.; Li, R.; Feng, X.; Orgiu, E.; Samori, P.; Treossi, E.; Palermo, V. ACS Nano 2016, 10(7), 7125.
[63] Bouša, D.; Jankovský, O.; Sedmidubský, D.; Luxa, J.; Šturala, J.; Pumera, M.; Sofer, Z. Chemistry 2015, 21(49), 17728.
[64] Farquhar, A. K.; Dykstra, H. M.; Waterland, M. R.; Downard, A. J.; Brooksby, P. A. J. Phys. Chem. C 2016, 120(14), 7543.
[65] Jin, Z.; Mcnicholas, T. P.; Shih, C. J.; Wang, Q. H.; Paulus, G. L. C.; Hilmer, A. J.; Shimizu, S.; Strano, M. S. Chem. Mater. 2011, 23(14), 3362.
[66] Lu, Y. Z.; Jiang, Y. Y.; Wei, W. T.; Wu, H. B.; Liu, M. M.; Niu, L.; Chen, W. J. Mater. Chem. 2012, 22(7), 2929.
[67] Yuan, J. C.; Chen, G. H.; Weng, W. G.; Xu, Y. Z. J. Mater. Chem. 2012, 22, 7929.
[68] Lai, C.; Sun, Y.; Yang, H.; Zhang, X.; Lin, B. Acta Chim. Sinica 2013, 71(9), 1201. (来常伟, 孙莹, 杨洪, 张雪勤, 林保平, 化学学报, 2013, 71(9), 1201.)
[69] Yang, X.; Ma, L.; Wang, S.; Li, Y.; Tu, Y. Polymer 2011, 52(14), 3046.
[70] Wang, Z.; Ge, Z.; Zheng, X.; Chen, N.; Peng, C.; Fan, C.; Huang, Q. Nanoscale 2011, 4(2), 394.
[71] Nanda, S. S.; Papaefthymiou, G. C.; Dong, K. Y. Crit. Rev. Solid State 2015, 40(5), 1.
[72] Lonkar, S. P.; Deshmukh, Y. S.; Abdala, A. A. Nano Res. 2014, 8(4), 1.
[73] Cao, Y.; Lai, Z.; Feng, J.; Wu, P. J. Mater. Chem. 2011, 21(25), 9271.
[74] Mohanty, N.; Berry, V. Nano Lett. 2008, 8(12), 4469.
[75] Liu, J.; Liu, Z.; Barrow, C. J.; Yang, W. Anal. Chim. Acta 2015, 859, 1.
[76] Liu, Z.; Robinson, J. T.; Sun, X.; Dai, H. J. Am. Chem. Soc. 2008, 130(33), 10876.
[77] Yang, H.; Kwon, Y.; Kwon, T.; Lee, H.; Kim, B. J. Small 2012, 8, 3161.
[78] Zhu, D. Y.; Xiao, Z. Y.; Liu, X. M. Int. J. Hydrogen Energy 2015, 40, 5081.
[79] Wu, Q.; Sun, Y.; Bai, H.; Shi, G. Phys. Chem. Chem. Phys., 2011, 13, 11193.
[80] Zhou, H.; Wang, X.; Yu, P.; Chen, X.; Mao, L. Analyst 2011, 137(2), 305.
[81] Collins, W. R.; Schmois, E.; Swager, T. M. Chem. Commun. 2011, 47(31), 8790.
[82] Wang, X.; Shi, G. Phys. Chem. Chem. Phys. 2015, 17, 28484.
[83] Yao, B.; Li, C.; Ma, J.; Shi, G. Phys. Chem. Chem. Phys. 2015, 17, 19538.
[84] Zhang, Y.; Liang, Y.; Zhou, J. Acta Chim. Sinica 2014, 72, 367. (张芸秋, 梁勇明, 周建新, 化学学报, 2014, 72, 367.)
[85] Duan, X.; Indrawirawan, S.; Sun, H.; Wang, S. Catal. Today 2015, 249, 184.
[86] Li, X.; Wang, H.; Robinson, J. T.; Sanchez, H.; Diankov, G.; Dai, H. J. Am. Chem. Soc. 2009, 131(43), 15939.
[87] Jafari, A.; Ghoranneviss, M.; Elahi, A. S. J. Cryst. Growth 2016, 438, 70.
[88] Xie, Z.; Zuo, X.; Zhang, G.; Li, Z.; Wang, C. Chem. Phys. Lett. 2016, 657, 18.

文章导航

/