Fe对NaNbO3的晶格掺杂和同步异质结改性及其光催化性能
收稿日期: 2016-08-12
网络出版日期: 2016-11-24
基金资助
项目受国家重大科学仪器设备开发专项基金(No.2014YQ060773)和江苏省高校优势学科建设工程项目资助.
Doping and Heterojunctional Cooperation of NaNbO3 by Fe and Their Photocatalytic Properties
Received date: 2016-08-12
Online published: 2016-11-24
Supported by
Project supported by the Foundation of National Key Scientific Instrument and Equipment Development Project of China (No. 2014YQ060773) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.
运用溶剂热法及继之的高温晶化法制备钙钛矿结构NaNbO3,并在此基础上同步获得了NaNbO3晶格内Fe3+的掺杂和NaNbO3晶格外α-Fe2O3的异质结复合.观察到了同步改性NaNbO3对水体罗丹明B(RhB)光催化降解效率的显著提升,最适Fe含量的改性NaNbO3对罗丹明B 1 h内的降解率可达95%,表观一级动力学速率常数为改性前NaNbO3的近7倍.运用X射线衍射(XRD)、扫描电子显微(SEM)、X光电子能谱(XPS)、光致发光(PL)光谱、低温N2吸附-脱附(BET法),电子自旋共振光谱(ESR),紫外-可见漫反射光谱(DRS)及光致电流检测等表征和测量探明改性体系的组成及结构,并表明Fe3+对Nb5+的掺杂取代可通过杂质能级形成、电子和空穴捕获以及溶氧吸附的促进从而有利于对罗丹明B的光催化降解;适量α-Fe2O3晶格外复合改性NaNbO3可通过NaNbO3与α-Fe2O3异质结间电子的跃迁和流动提高复合催化剂的光量子效率.Fe对NaNbO3晶格内外改性促活的实质可能在于光生载流子迁移的促进和对其复合的抑制.
崔素珍 , 杨汉培 , 孙慧华 , 聂坤 , 吴俊明 . Fe对NaNbO3的晶格掺杂和同步异质结改性及其光催化性能[J]. 化学学报, 2016 , 74(12) : 995 -1002 . DOI: 10.6023/A16080404
The perovskite-type NaNbO3 were prepared through a solvothermal process under a moderate condition followed by calcinations at high temperature.The Fe3+-doping inside the NaNbO3 lattice and the heterojunctions between α-Fe2O3 and NaNbO3 were acquired synchronously in a similar process by treating NaNbO3 with ferric nitrates.The photocatalytic activity of catalysts was evaluated from the photodegradation of Rhodamine B (RhB) in aqueous solution under UV light irradiation and the significant enhancement of degradation rate of aqueous RhB on modified NaNbO3 was observed,with the degradation ratio of RhB reached as high as 95% within 1 h,and the quasi-first-grade rate constant of the RhB degradation reaction over the modified NaNbO3 reached almost 7 times of the pristine one under the experimental conditions.Characterizations by X-ray diffraction (XRD),scanning electron microscopy (SEM),X-ray photoelectron spectroscopy (XPS),UV-vis diffuse reflectance spectrophotometry (DRS),adsorption-desorption of N2 at low temperature (BET calculation),photoluminescence spectroscopy (PL),electron spin resonance spectroscopy (ESR) and photocurrent measurement were performed.The compositions and structures of the as-prepared raw and modified catalysts were carefully identified.It is found that the optimal mass fraction of Fe in modified catalysts is around 2.5%,with about 30% of it exists as Fe3+ inside the lattice of NaNbO3 and the remainder as α-Fe2O3 outside the NaNbO3 lattice.The results of characterizations or measurements suggest that a moderate Nb5+ in NaNbO3 can be substituted by Fe3+ while the perovskite-type structure of NaNbO3 remains unchanging.The moderate Fe-doping into the lattice of NaNbO3 improved the photocatalytic performance of NaNbO3 by the donor level of impurities,charge capturing and adsorption of dissolved oxygen.A fitting amount of α-Fe2O3 cooperates harmoniously with NaNbO3 in degradation of RhB by enhancing the light quantum efficiency through the migration and jumping of electrons or holes between α-Fe2O3 and NaNbO3.It is proposed that the modification (i) promotes the excitation of photocatalysts indicated by an improved light adsorption of modified catalysts on DRS,(ii) suppresses the recombination of photogenerated charge carriers revealed by PL spectra,and (iii) promotes the charge transfer founded by photocurrent measurements.
Key words: NaNbO3; iron modification; photocatalysis; Rhodamine B; promotion mechanism
[1] Kisch, H. Angew. Chem. Int. Ed. 2013, 52, 812.
[2] Cao, S. W.; Low, J. X.; Yu, J. G.; Jaroniec, M. Adv. Mater. 2015, 27, 2150.
[3] Liu, X. H.; Wu, Z. C.; Zhao, Y. W.; Yang, Y. C.; Fu, Y. B. Acta Chim. Sinica 2009, 67, 507(in Chinese). (刘秀华, 吴仲成, 赵雅文, 杨宇川, 傅依备, 化学学报, 2009, 67, 507.)
[4] Wan, Z. Q.; Zheng, S. N.; Jia, C. Y.; Yan, W. Acta Chim. Sinica 2009, 67, 403(in Chinese). (万中全, 郑树楠, 贾春阳, 延卫, 化学学报, 2009, 67, 403.)
[5] Kang, Z. J.; Yao, Y. H.; Xu, G. H. Mol.Catal. (China) 2004, 18, 468(in Chinese). (康振晋, 姚艳红, 许桂花, 分子催化, 2004, 18, 468.)
[6] Fu, X. X.; Yang, Q. H.; Sang, L. X. Chem. J. Chin. Univ. 2002, 23, 283(in Chinese). (傅希贤, 杨秋华, 桑丽霞, 高等学校化学学报, 2002, 23, 283.)
[7] Li, G. Q.; Yang, N.; Wang, W. L.; Zhang, W. F. J. Phys. Chem. C 2009, 113, 14829.
[8] Lv, J.; KaKo, T.; Li, Z. S.; Zou, Z. G.; Ye, J. H. J. Phys. Chem. C 2010, 114, 6157.
[9] Shi, H. F.; Chen, G. Q.; Zou, Z. G. Appl. Catal. B-Environ. 2014, 156-157, 378.
[10] Lan, B. Y.; Shi, H. F. J. At. Mol. Phys. 2014, 31, 648. (in Chinese). (蓝奔月, 史海峰, 原子与分子物理学报, 2014, 31, 648.)
[11] Yao, L. Z.; Kong, D. S.; Du, J. Y.; Wang, Z.; Zhang, J. W.; Wang, N.; Li, W. J.; Feng, Y. Y. Acta Phys.-Chim. Sin. 2015, 31, 1895(in Chinese). (姚利珍, 孔德生, 杜玖瑶, 王泽, 张经纬, 王娜, 李文娟, 冯媛媛, 物理化学学报, 2015, 31, 1895.)
[12] Ghorai, T. K.; Chakraborty, M.; Pramanik, P. J. Alloys Compd. 2011, 509, 8158.
[13] Xie, J.; Zhang, L.; Li, M. X.; Hao, Y. J.; Lian, Y. W.; Li, Z.; Wei, Y. Ceram. Int. 2015, 41, 9420.
[14] Su, B. T.; Sun, J. X.; Hu, C. L.; Zhang, X. H.; Fei, P.; Lei, Z. Q. Acta Phys.-Chim. Sin. 2009, 25, 1561(in Chinese). (苏碧桃, 孙佳星, 胡常林, 张小红, 费鹏, 雷自强, 物理化学学报, 2009, 25, 1561.)
[15] Li, Z. J.; Shen, W. Z.; He, W. S.; Zu, X. T. J. Hazard. Mater. 2008, 155, 590.
[16] Gao, S. M.S. Thesis, Harbin Institute of Technology, Harbin, 2010, (in Chinese). (郜帅, 硕士论文, 哈尔滨工业大学, 哈尔滨, 2010.)
[17] Xu, H.; Liu, C. T.; Li, H. M.; Xu, Y. G.; Xia, J. X.; Yin, S.; Liu, L.; Wu, X. J. Alloys Compd. 2011, 509, 9157.
[18] Chen, N. N.; Li, G. Q.; Zheng, W. F. Physica B 2014, 447, 12.
[19] Das, R.; Sharma, S.; Mandal, K. J. Magn. Magn. Mater. 2016, 401, 129.
[20] Yin, Q. Q.; Qiao, R.; Zhu, L. L.; Li, Z. Q.; Li, M. M.; Wu, W. J. Mater. Lett. 2014, 135, 135.
[21] Mishra, M.; Chun, D.-M. Appl. Catal. A-Gen. 2015, 498, 126.
[22] Grosvenor, A. P.; Kobe, B. A.; Biesinger, M. C.; McIntyre, N. S. Surf. Interface Anal. 2004, 36, 1564.
[23] Tian, J. J.; Gao, H. P.; Deng, W. B.; Zheng, H. W.; Tan, F. R.; Zhang, W. F. J. Alloys Compd. 2016, 687, 529.
[24] Wang, T.; Yang, G. D.; Liu, J.; Yang, B. L.; Ding, S. J.; Yan, Z. F.; Xiao, T. C. Appl. Surf. Sci. 2014, 311, 314.
[25] Shi, H. F.; Lan, B. Y.; Zhang, C. L.; Zou, Z. G. J. Phys. Chem. Solids 2014, 75, 74.
[26] Zhang, Y. J.; Zhang, D. K.; Guo, W. M.; Chen, S. J. J. Alloys Compd. 2016, 685, 84.
[27] Jiang, J.; Zhang, X.; Sun, P. B.; Zhang, L. Z. J. Phys. Chem. C 2011, 115, 20555.
[28] Dong, G.; Zhu, Z. Q.; Liu, Q. J. J. Func. Mater. 2011, 42, 2217(in Chinese). (董刚, 朱忠其, 柳清菊, 功能材料, 2011, 42, 2217.)
[29] Lin, H. J.; Yang, T.-S.; Wang, M.-C.; His, C.-S. J. Alloys Compd. 2014, 610, 478.
[30] Asiltürk, M.; Say?lkan, F.; Arpac, E. J. Photochem. Photobiol., A:Chem. 2009, 203, 64.
[31] Liang, H.; Hong, Y. X.; Zhu, C. Q.; Li, S. H.; Chen, Y.; Liu, Z. L.; Ye, D. Q. Catal. Today 2013, 201, 98.
[32] Sayyar, Z.; Babaluo, A. A.; Shahrouzi, J. R. Appl. Surf. Sci. 2015, 335, 1.
[33] Tang, Z. Y.; Song, S. D.; Liu, J. H.; Pan, L. Z.; Nan, J. M. Acta Phys.-Chim. Sin. 2003, 19, 785(in Chinese). (唐致远, 宋世栋, 刘建华, 潘丽珠, 南俊民, 物理化学学报, 2003, 19, 785.)
[34] Zhang, J. Y.; Tan, D. D.; Weng, X. L.; Wu, Z. B. Appl. Catal. B-Environ. 2015, 172-173, 18.
[35] Xu, Q. C.; Wellia, D. V.; Ning, Y. H.; Amal, R.; Tian, T. T. Y. J. Phys. Chem. C 2011, 115, 7419.
[36] Xu, H.; Yan, J.; Xu, Y. G.; Song, Y. H.; Li, H. M.; Xia, J. X.; Huang, C. J.; Wan, H. L. Appl. Catal. B-Environ. 2013, 129, 182.
[37] Bai, S.; Jiang, W. Y.; Li, Z. Q.; Xiong, Y. J. ChemNanoMat 2015, 1, 223.
[38] Qi, C. D.; Liu, X. T.; Ma, J.; Lin, C. Y.; Li, X. W.; Zhang, H. J.; Chemosphere 2016, 151, 280.
[39] Liu, G. G.; Zhao, J. C.; Hidaka, H. J. Photochem. Photobiol., A:Chem. 2000, 133, 83.
[40] Xiang, Q. J.; Yu, J. G.; Jaroniec, M. Chem. Soc. Rev. 2012, 41, 782.
/
| 〈 |
|
〉 |