研究通讯

Me2(CH2Cl)SiCN和Me3SiCN在醛的不对称氰化反应中的比较研究

  • 叶旭 ,
  • 曾兴平 ,
  • 周剑
展开
  • a 华东师范大学化学与分子工程学院 绿色化学与化工过程绿色化上海市重点实验室 上海 200062;
    b 中国科学院上海有机化学研究所 金属有机化学国家重点实验室 上海 200032

收稿日期: 2016-10-12

  网络出版日期: 2016-12-20

基金资助

项目受国家自然科学基金(No.21472049)资助.

A Comparison of Me2(CH2Cl)SiCN and Me3SiCN in Catalytic Enantioselective Cyanation of Aldehydes

  • Ye Xu ,
  • Zeng Xingping ,
  • Zhou Jian
Expand
  • a Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062;
    b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, Shanghai 200032, China

Received date: 2016-10-12

  Online published: 2016-12-20

Supported by

Project supported by the National Natural Science Foundation of China (No. 21472049).

摘要

研究考察了在手性(salen)AlCl-叶立德络合物(R,R)-1/2a作为催化剂和异丙醚作为溶剂的条件下,两种不同硅氰化试剂[Me2(CH2Cl)SiCN和Me3SiCN(TMSCN)]在对醛的不对称氰化中的应用情况.一系列不同取代的芳香醛均可分别与这两种试剂发生反应,以高到优秀的产率和对映选择性得到目标产物.脂肪醛的反应产物的对映选择性最高只能达到中等.对比研究发现,Me2(CH2Cl)SiCN在醛的硅氰化反应中显示出了明显高于TMSCN的反应活性,但是产物的对映选择性大体相当.

本文引用格式

叶旭 , 曾兴平 , 周剑 . Me2(CH2Cl)SiCN和Me3SiCN在醛的不对称氰化反应中的比较研究[J]. 化学学报, 2016 , 74(12) : 984 -989 . DOI: 10.6023/A16100541

Abstract

We report the comparative studies of Me2(CH2Cl) SiCN and Me3SiCN in the catalytic enantioselective cyanation reactions of aldehydes,which were catalyzed by the merger of 5 mol% Jacobsen's catalyst (salen) AlCl (R,R)-1 and 6 mol% ylide 2a,and are conducted at -50℃ using i-Pr2O as the solvent.This was based on our recent finding that (R,R)-1 could be effectively activated by ylide to form an enhanced chiral Lewis acid.Generally,the use of Me2(CH2Cl) SiCN as the cyanating reagent afforded obviously higher activity in the reaction of all the aldehydes we examined,along with by-and-large similar enantioselectivity.This further suggested that Me2(CH2Cl) SiCN might be useful cyanating reagent to develop reaction involving the use of less active substrates.Under the indicated condition,aromatic aldehydes worked well to give the desired adducts in up to 99% yield and 94% ee,but the reactions of vinyl aldehydes and aliphatic aldehydes were not successful.All the reactions were performed by the following general procedure.To a 4 mL vial were successively added complex (R,R)-1(30.3 mg,0.05 mmol),ylide 2a (22.6 mg,0.06 mmol) and i-Pr2O (1.0 mL).The resulting solution was stirred at -50℃ for 0.5 h before the addition of aldehydes (1.0 mmol) and the cyanating reagent,Me2(CH2Cl) SiCN or Me3SiCN (250 μL,2.0 mmol).After TLC analysis indicated the full consumption of the aldehydes,the reaction mixture was filtrated with a pad of silica gel and eluted with Et2O.The filtrate is concentrated under reduced pressure to give a crude residue for column chromatography purification.In contrast,when Me2(CH2Cl) SiCN is used,both cyanohydrins and its silyl ethers were obtained,so a further deprotection by p-TsOH is adopted to obtain free cyanohydrins as the only product.

参考文献

[1] Gregory, R. J. H. Chem. Rev. 1999, 99, 3649.
[2] Jones, S. B.; Simmons, B.; Mastracchio, A.; MacMillan, D. W. C. Nature 2011, 475, 183.
[3] (a) Kurono, N.; Ohkuma, T. ACS Catal. 2016, 6, 989;
(b) Fu, Y.; Hou, B.; Zhao, X.; Du, Z.; Hu, Y. Chin. J. Org. Chem. 2015, 35, 2507. (傅颖, 侯博, 赵兴玲, 杜正银, 胡雨来, 有机化学, 2015, 35, 2507);
(c) Wang, W.; Liu, X.; Lin, L.; Feng, X. Eur. J. Org. Chem. 2010, 4751;
(d) North, M.; Usanov, D. L.; Young, C. Chem. Rev. 2008, 108, 5146;
(e) Brunel, J.-M.; Holmes, I. P. Angew. Chem., Int. Ed. 2004, 43, 2752.
[4] (a) Kobayashi, S.; Tsuchiya, Y.; Mukaiyama, T. Chem. Lett. 1991, 541;
(b) Hayashi, M.; Miyamoto, Y.; Inoue, T.; Oguni, N. J. Chem. Soc. Chem. Commun. 1991, 1752;
(c) Hayashi, M.; Miyamoto, Y.; Inoue, T.; Oguni, N. J. Org. Chem. 1993, 58, 1515;
(d) Bolm, C.; Muller, P. Tetrahedron Lett. 1995, 36, 1625;
(e) Abiko, A.; Wang, G. Q. J. Org. Chem. 1996, 61, 2264;
(f) Belokon, Y. N.; Flego, M.; Ikonnikov, N. S.; Moscalenko, M. A.; North, M.; Orizu, C.; Tararov, V. I.; Tasinazzo, M. J. Chem. Soc. 1997, 1293;
(g) Iovel, I.; Popelis, Y.; Fleisher, M.; Lukevics, E. Tetrahedron:Asymmetry 1997, 8, 1279;
(h) Hamashima, Y.; Sawada, D.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 1999, 121, 2641;
(i) Belokon, Y. N.; Caveda-Cepas, S.; Green, B.; Ikonnikov, N. S.; Khrustalev, V. N.; Larichev, V. S.; Moscalenko, M. A.; North, M.; Orizu, C.; Tararov, V. I.; Tasinazzo, M.; Timofeeva, G. I.; Yashkina, L. V. J. Am. Chem. Soc. 1999, 121, 3968;
(j) Belokon, Y. N.; North, M.; Parsons, T. Org. Lett. 2000, 2, 1617;
(k) You, J.-S.; Gau, H.-M.; Choi, M. K. Chem. Commun. 2000, 1963;
(l) Holmes, I. P.; Kagan, H. B. Tetrahedron Lett. 2000, 41, 7457;
(m) Ryu, D. H.; Corey, E. J. J. Am. Chem. Soc. 2004, 126, 8106;
(n) Qin, Y. C.; Liu, L.; Pu, L. Org. Lett. 2005, 7, 2381;
(o) Hatano, M.; Ikeno, T.; Miyamoto, T.; Ishihara, K. J. Am. Chem. Soc. 2005, 127, 10776;
(p) Moreno, R. M.; Rosol, M.; Moyano, A. Tetrahedron:Asymmtry 2006, 17, 1089;
(q) Kurono, N.; Arai, K.; Uemura, M.; Ohkuma, T. Angew. Chem., Int. Ed. 2008, 47, 6643;
(r) Yoshinaga, K.; Nagata, T. Adv. Synth. Catal. 2009, 351, 1495;
(s) Dang, D.; Wu, P.; He, C.; Xie, Z.; Duan, C. J. Am. Chem. Soc. 2010, 132, 14321;
(t) Chu, C.-Y.; Hsu, C.-T.; Lo, P. H.; Uang, B.-J. Tetrahedron:Asymmetry 2011, 22, 1981;
(u) Blocka, E.; Bosiak, M. J.; Welniak, M.; Ludwiczak, A.; Wojtczak, A. Tetrahedron:Asymmetry 2014, 25, 554;
(v) Mo, K.; Yang, Y.; Cui, Y. J. Am. Chem. Soc. 2014, 136, 1746.
[5] (a) Sawada, D.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2000, 122, 10521;
(b) Kende, A. S.; Liu, K.; Kaldor, I.; Dorey, G.; Koch, K. J. Am. Chem. Soc. 1995, 117, 8258.
[6] (a) Yang, Z. H.; Wang, L. X.; Zhou, Z. H.; Zhou, Q. L.; Tang, C. C. Tetrahedron:Asymmetry 2001, 12, 1579;
(b) He, K.; Zhou, Z.; Wang, L.; Li, K.; Zhao, G.; Zhou, Q.; Tang, C. Tetrahedron 2004, 60, 10505;
(c) Zeng, Z.; Zhao, G.; Gao, P.; Tang, H.; Chen, B.; Zhou, Z.; Tang, C. Catal. Commun. 2007, 8, 1443;
(d) Lv, C.; Wang, S.; Wu, M.; Xia, C.; Sun, W. Tetrahedron:Asymmetry 2010, 21, 1869;
(e) Wen, Y. Q.; Ren, W. M.; Lu, X. B. Chin. Chem. Lett. 2011, 22, 1285.
(f) Zeng, Z.; Zhao, G.; Zhou, Z.; Tang, C. Eur. J. Org. Chem. 2008, 1615;
(g) Yang, H. Q.; Zhang, L.; Wang, P.; Yang, Q. H.; Li, C. Green Chem. 2009, 11, 257;
(h) Yang, W. B.; Fang, J. M. J. Org. Chem. 1998, 63, 1356;
(i) Wei, Y. L.; Huang, W. S.; Cui, Y. M.; Yang, K. F.; Xua, Z.; Xu, W. L. RSC Adv. 2015, 5, 3098.
[7] (a) Li, Y.; He, B.; Qin, B.; Feng, X.; Zhang, G. J. Org. Chem. 2004, 69, 7910;
(b) Chen, F. X.; Feng, X. M. Synlett 2005, 892;
(c) Wen, Y. H.; Huang, X.; Huang, J. L.; Xiong, Y.; Qin, B.; Feng, X. M. Synlett 2005, 2445;
(d) Liu, Y. L.; Liu, X. H.; Xin, J. G.; Feng, X. M. Synlett 2006, 1085;
(e) Wang, W.; Zhou, S.; Liu, X.; Feng, X. Tetrahedron 2007, 63, 5129;
(f) Liu, X. H.; Lin, L. L.; Feng, X. M. Acc. Chem. Res. 2011, 44, 574;
(g) Liu, X.; Lin, L.; Feng, X. Org. Chem. Front. 2014, 1, 298.
[8] (a) Long, J.; Hu, J.; Shen, X.; Ji, B.; Ding, K. J. Am. Chem. Soc. 2002, 124, 10;
(b) Yuan, Y.; Zhang, X.; Ding, K. Angew. Chem., Int. Ed. 2003, 42, 5478;
(c) Du, H.; Ding, K. Org. Lett. 2003, 5, 1091;
(d) Ding, K.; Du, H.; Yuan, Y.; Long, J. Chem. Eur. J. 2004, 10, 2872.
[9] Zhang, Z.; Wang, Z.; Zhang, R.; Ding, K. Angew. Chem., Int. Ed. 2010, 49, 6746.
[10] (a) Luo, H. Chin. J. Org. Chem. 2011, 31, 1(罗海南, 有机化学, 2011, 31, 1);
(b) Soleimani, E. Synlett 2007, 18, 1625;
(c) Romero-Hernández, L. L. Synlett 2015, 26, 563;
(d) Gawronski, J.; Wascinska, N.; Gajewy, J. Chem. Rev. 2008, 108, 5227;
(e) Fuchs, P. L. Handbook of Reagents for Organic Syntehsis, Reagents for Silicon-Mediated Organic Synthesis, John Wiley & Sons, New Deli, Singapore, 2011.
[11] (a) Liu, Y.-L.; Shi, T.-D.; Zhou, F.; Zhao, X.-L.; Wang, X.; Zhou, J. Org. Lett. 2011, 13, 3826;
(b) Liu, Y.-L.; Zhou, J. Chem. Commun. 2013, 49, 4421;
(c) Liu, Y.-L.; Zhou, F.; Cao, J.-J.; Ji, C.-B.; Ding, M.; Zhou, J. Org. Biomol. Chem. 2010, 8, 3847. For a mini-review:
(d) Liu, Y.-L.; Zhou, J. Synthesis 2015, 1210.
[12] Zhao, Y.-L.; Cao, Z.-Y.; Zeng, X.-P.; Shi, J.-M.; Yu, Y.-H.; Zhou, J. Chem. Commun. 2016, 52, 3943.
[13] Cao, J.-J.; Zhou, F.; Zhou, J. Angew. Chem., Int. Ed. 2010, 49, 4976.
[14] Zeng, X.-P.; Cao, Z.-Y.; Wang, X.; Chen, L.; Zhou, F.; Zhu, F.; Wang, C.-H.; Zhou, J. J. Am. Chem. Soc. 2016, 138, 416.
[15] Zeng, X.-P.; Zhou, J. J. Am. Chem. Soc. 2016, 138, 8730.
[16] (a) Yoon, T. P.; Jacobsen, E. N. Science 2003, 299, 1691;
(b) Zhou, Q.-L. Privileged Chiral Ligands and Catalysts, Wiley-VCH Verlag & Co. KGaA, Weinheim, Germany, 2011.
[17] (a) Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120, 5315;
(b) Sammis, G. M.; Jacobsen, E. N. J. Am. Chem. Soc. 2003, 125, 4442;
(c) Wang, S.-X.; Wang, M.-X.; Wang, D.-X.; Zhu, J. Org. Lett. 2007, 9, 3615;
(d) Wang, S.-X.; Wang, M.-X.; Wang, D.-X.; Zhu, J. Angew. Chem., Int. Ed. 2008, 47, 388;
(e) Yue, T.; Wang, M.-X.; Wang, D.-X.; Zhu, J. Angew. Chem., Int. Ed. 2008, 47, 9454;
(f) Bandini, M.; Fagioli, M.; Garavelli, M.; Melloni, A.; Trigari, V.; Umani-Ronchi, A. J. Org. Chem. 2004, 69, 7511;
(g) Jakhar, A.; Sadhukhan, A.; Khan, N. H.; Saravanan, S.; Kureshy, R. I.; Abdi, S. H. R.; Bajaj, H. C. ChemCatChem 2014, 6, 2656. For selected reviews:
(h) Jacobsen, E. N. Acc. Chem. Res. 2000, 33, 421;
(i) Larrow, J. F.; Jacobsen, E. N. Topics Organomet. Chem. 2004, 6, 123.
(j) Baleizão, C.; Garcia, H. Chem. Rev. 2006, 106, 3987.
[18] Kim, S. S. Pure Appl. Chem. 2006, 78, 977.
[19] We tried the one-pot sequential asymmetric cyanosilylation/chloromethyl transfer reaction, and the corresponding aromatic methyl ketones were obtained as the major product. For the proposed mechanism, see supporting information:???A16100541-1???
[20] According to the reviewer's suggestion, we investigated the effect of Ph3PO, which could generate from side Wittig reaction, on the cyanation of p-chlorobenzaldehyde and TMSCN. NMR analysis of the crude reaction mixture showed the signals of both Ph3PO and ylide, suggesting ylide 2a was not consumed at the end of the cyanation. The addition of 6 mol% of Ph3PO did not appreciably accelerate the cyanation reaction. When Ph3PO and (salen)AlCl were used as the catalysts, in the absence of ylide 2a, the reaction could also proceed well, albeit in a lower reaction rate (finish within 2 days and afford 91% ee). This suggested that the Ph3PO produced from side Wittig reaction had little acceleration effect on the reactivity, but slightly decreased the enantioselectivity of the reaction. (Cheng, B.)???A16100541-2???

文章导航

/