光控释药型药物递送系统的研究进展
收稿日期: 2017-05-02
网络出版日期: 2017-08-16
基金资助
项目受国家自然科学基金(Nos.21376039,U1608222)资助.
Progress in Research of Photo-controlled Drug Delivery Systems
Received date: 2017-05-02
Online published: 2017-08-16
Supported by
Project supported by the National Natural Science Foundation of China (Nos.21376039,U1608222).
释药可控的药物递送系统能够在特定刺激条件下,在时间和空间上精确实现在病灶处释放包载的药物分子,具有药物利用率高、毒副作用低等诸多优点,为各种重大疾病,如肿瘤的精准治疗提供了新思路.在众多的可控释药递送系统中,利用特定光照控制药物释放的光控释药型药物递送系统展现出广阔的应用潜力,受到研究者的广泛关注.近年来,基于不同光响应机理的光控释药型药物递送系统被设计开发用于药物的精确可控释放,本文介绍了四种光敏感基团的不同光响应机理,对基于不同光响应机理的光控释药型药物递送系统的研究进展进行了综述,指出现有光控释药型药物递送系统存在的问题及对未来的研究方向进行了展望.
张留伟 , 钱明 , 王静云 . 光控释药型药物递送系统的研究进展[J]. 化学学报, 2017 , 75(8) : 770 -782 . DOI: 10.6023/A17050194
The controlled drug delivery systems, due to their precise control of drug release in spatiotemporal level triggered by specific stimulating factors and advantages such as higher utilization ratio of drug, less side-effects to normal tissues and so forth, provide a new strategy for the precise treatment of many serious diseases, especially tumors. The materials that constitute the controlled drug delivery systems are called "smart materials" and they can respond to the stimuli of some internal (pH, redox, enzymes, etc.) or external (temperature, electrical/magnetic, ultrasonic and optica l,etc.) environments. Before and after the response to the specific stimulus, the composition or conformational of smart materials will be changed, damaging the original balance of the delivery systems and releasing the drug from the delivery systems. Amongst them, the photo-controlled drug delivery systems, which display drug release controlled by light, demonstrated extensive potential applications, and received wide attention from researchers. In recent years, photo-controlled drug delivery systems based on different photo-responsive groups have been designed and developed for precise photo-controlled release of drugs. Herein, in this review, we introduced four photo-responsive groups including photocleavage groups, photoisomerization groups, photo-induced rearrangement groups and photocrosslinking groups, and their different photo-responsive mechanisms. Firstly, the photocleavage groups represented by O-nitrobenzyl are able to absorb the energy of the photons, inducing the cleavage of some specific covalent bonds. Secondly, azobenzenes, as a kind of photoisomerization groups, are able to convert reversibly between the apolar trans form and the polar cis form upon different light irradiation. Thirdly, 2-diazo-1,2-naphthoquinone as the representative of the photo-induced rearrangement groups will absorb specific photon energy, carrying out Wolff rearrangement reaction. Finally, coumarin is a promising category photocrosslinking groups that can undergo[2+2] cycloaddition reactions under light irradiation. The research progress of photo-controlled drug delivery systems based on different photo-responsive mechanisms were mainly reviewed. Additionally, the existing problems and the future research perspectives of photo-controlled drug delivery systems were proposed.
[1] Liu, M.; Du, H.; Zhang, W.; Zhai, G. Mater. Sci. Eng., C 2017, 71, 1267.
[2] Yin, J.; Chen, Y.; Zhang, Z. H.; Han, X. Polymers 2016, 8, 268.
[3] Hou, Z. Y.; Deng, K. R.; Li, C. X.; Deng, X. R.; Lian, H. Z.; Cheng, Z. Y.; Jin, D. Y.; Lin, J. Biomaterials 2016, 101, 32.
[4] Xia, J.; Zhang, L. W.; Qian, M.; Bao, Y. M.; Wang, J. Y.; Li, Y. C. J. Colloid Interface Sci. 2017, 498, 170.
[5] Han, S. Y.; Samanta, A.; Xie, X. J.; Huang, L.; Peng, J. J.; Park, S. J.; The, D. B. L.; Choi, Y.; Chang, Y.; All, A. H.; Yang, Y. M.; Xing, B. G.; Liu, X. G. Adv. Mater. 2017, 29, 1700244.
[6] Qiu, W. X.; Liu, L. H.; Li, S. Y.; Lei, Q.; Luo, G. F.; Zhang, X. Z. Small 2017, 13, 1603956.
[7] Li, Y. Y.; Jiang, C. H.; Zhang, D. W.; Wang, Y.; Ren, X. Y.; Ai, K. L.; Chen, X. S. Acta Biomater. 2017, 47, 124.
[8] Zhang, J. F.; Yang, C. X.; Zhang, R.; Chen, R.; Zhang, W. J.; Peng, X. Y.; Liu, G.; Hsu, C. S.; Lee, C. S. Adv. Funct. Mater. 2017, 27, 1605094.
[9] Rwei, A. Y.; Wang, W.; Kohane, D. S. Nano Today 2015, 10, 451.
[10] Yu, L. L.; Yao, L.; Yang, L. Y. Chem. Ind. Eng. Prog. 2012, 31, 1065(in Chinese). (余丽丽, 姚琳, 杨黎燕, 化工进展, 2012, 31, 1065.)
[11] Huang, Y.; Dong, R. J.; Zhu, X. Y.; Yan, D. Y. Soft Matter 2014, 10, 6121.
[12] Du, X.; Jiang, Y.; Zhuo, R.; Jiang, X. J. Polym. Sci., Part A:Polym. Chem. 2016, 54, 2855.
[13] Ye, Z.; Guo, J. J.; Wu, D. W.; Tan, M.; Xiong, X.; Yin, Y.; He, G. Carbohydr. Polym. 2015, 132, 520.
[14] Ji, W.; Li, N.; Chen, D.; Qi, X.; Sha, W.; Jiao, Y.; Xu, Q.; Lu, J. J. Mater. Chem. B 2013, 1, 5942.
[15] Li, H.; Tong, W.; Gao, C. J. Colloid Interface Sci. 2016, 463, 22.
[16] Lux, C.; Lux, J.; Collet, G.; He, S.; Chan, M.; Olejniczak, J.; Foucault-Collet, A.; Almutairi, A. Biomacromolecules 2015, 16, 3286.
[17] Dispinar, T.; Colard, C. A. L.; Du Prez, F. E. Polym. Chem. 2013, 4, 763.
[18] Wang, Q.; Coffinier, Y.; Li, M.; Boukherroub, R.; Szunerits, S. Langmuir 2016, 32, 6515.
[19] Chen, Z.; Li, N.; Chen, L.; Lee, J.; Gassensmith, J. J. Small 2016, 12, 4563.
[20] Cui, L.; Zhang, F.; Wang, Q.; Lin, H.; Yang, C.; Zhang, T.; Tong, R.; An, N.; Qu, F. J. Mater. Chem. B 2015, 3, 7046.
[21] Chen, G. J.; Jaskula-Sztul, R.; Esquibel, C. R.; Lou, I.; Zheng, Q. F.; Dammalapati, A.; Harrison, A.; Eliceiri, K. W.; Tang, W. P.; Chen, H.; Gong, S. Q. Adv. Funct. Mater. 2017, 27. 1604671
[22] Olejniczak, J.; Nguyen Huu, V. A.; Lux, J.; Grossman, M.; He, S.; Almutairi, A. Chem. Commun. 2015, 51, 16980.
[23] Song, J.; Fang, Z.; Wang, C.; Zhou, J.; Duan, B.; Pu, L.; Duan, H. Nanoscale 2013, 5, 5816.
[24] Meng, L.; Huang, W.; Wang, D.; Huang, X.; Zhu, X.; Yan, D. Biomacromolecules 2013, 14, 2601.
[25] Li, Y.; Qian, Y.; Liu, T.; Zhang, G.; Liu, S. Biomacromolecules 2012, 13, 3877.
[26] Huang, Q.; Liu, T.; Bao, C.; Lin, Q.; Ma, M.; Zhu, L. J. Mater. Chem. B 2014, 2, 3333.
[27] Cao, J.; Huang, S.; Chen, Y.; Li, S.; Li, X.; Deng, D.; Qian, Z.; Tang, L.; Gu, Y. Biomaterials 2013, 34, 6272.
[28] Zhang, R.; Yao, R.; Ding, B.; Shen, Y.; Shui, S.; Wang, L.; Li, Y.; Yang, X.; Tao, W. Adv. Mater. Sci. Eng. 2014, 2014, 1.
[29] Liang, Y.; Gao, W. X.; Peng, X. Y.; Deng, X.; Sun, C. Z.; Xu, H. Y.; He, B. Biomaterials 2016, 100, 76.
[30] Huo, H. H.; Ma, X. Y.; Dong, Y. Q.; Qu, F. J. Eur. Polym. J. 2017, 87, 331.
[31] Hu, X.; Feeney, M. J.; McIntosh, E.; Mullahoo, J.; Jia, F.; Xu, Q.; Thomas, S. W. ACS Appl. Mater. Inter. 2016, 8, 23517.
[32] Fomina, N.; McFearin, C.; Sermsakdi, M.; Edigin, O.; Almutairi, A. J. Am. Chem. Soc. 2010, 132, 9540.
[33] Kumar, S.; Allard, J. F.; Morris, D.; Dory, Y. L.; Lepage, M.; Zhao, Y. J. Mater. Chem. 2012, 22, 7252.
[34] Fatieiev, Y.; Croissant, J. G.; Alsaiari, S.; Moosa, B. A.; Anjum, D. H.; Khashab, N. M. ACS Appl. Mater. Inter. 2015, 7, 24993.
[35] Huynh, C. T.; Nguyen, M. K.; Tonga, G. Y.; Longe, L.; Rotello, V. M.; Alsberg, E. Adv. Healthc. Mater. 2016, 5, 305.
[36] Jiang, Z.; Li, H.; You, Y.; Wu, X.; Shao, S.; Gu, Q. J. Biomed. Mater. Res., Part A 2015, 103, 65.
[37] Kohman, R. E.; Cha, S. S.; Man, H. Y.; Han, X. Nano Lett. 2016, 16, 2781.
[38] Li, S.; Moosa, B. A.; Croissant, J. G.; Khashab, N. M. Angew. Chem., Int. Ed. 2015, 54, 6804.
[39] Liu, W.; Liang, L.; Lo, P. K.; Gou, X. J.; Sun, X. H. Tetrahedron Lett. 2016, 57, 959.
[40] Lv, C.; Wang, Z.; Wang, P.; Tang, X. Int. J. Mol. Sci. 2012, 13, 16387.
[41] Olejniczak, J.; Sankaranarayanan, J.; Viger, M. L.; Almutairi, A. ACS Macro Lett. 2013, 2, 683.
[42] Yu, L.; Ren, N.; Yang, K.; Zhang, M.; Su, L. J. Appl. Polym. Sci. 2016, 133, 1.
[43] Lv, C.; Wang, Z.; Wang, P.; Tang, X. Langmuir 2012, 28, 9387.
[44] Soleimani, A.; Borecki, A.; Gillies, E. R. Polym. Chem. 2014, 5, 7062.
[45] Yan, B.; Boyer, J. C.; Habault, D.; Branda, N. R.; Zhao, Y. J. Am. Chem. Soc. 2012, 134, 16558.
[46] Dcona, M. M.; Sheldon, J. E.; Mitra, D.; Hartman, M. C.T. Bioorg. Med. Chem. Lett. 2017, 27, 466.
[47] Li, J. M.; Lee, W. Y.; Wu, T. Y.; Xu, J. B.; Zhang, K. Y.; Wong, D. S. H.; Li, R.; Li, G.; Bian, L. M. Biomaterials 2016, 110, 1.
[48] Wong, P. T.; Chen, D.; Tang, S.; Yanik, S.; Payne, M.; Mukherjee, J.; Coulter, A.; Tang, K.; Tao, K.; Sun, K.; Baker, J. R., Jr.; Choi, S. K. Small 2015, 11, 6078.
[49] Tan, X.; Li, B. B.; Lu, X.; Jia, F.; Santori, C.; Menon, P.; Li, H.; Zhang, B.; Zhao, J. J.; Zhang, K. J. Am. Chem. Soc. 2015, 137, 6112.
[50] Lin, Q.; Bao, C.; Yang, Y.; Liang, Q.; Zhang, D.; Cheng, S.; Zhu, L. Adv. Mater. 2013, 25, 1981.
[51] Zhao, L.; Peng, J.; Huang, Q.; Li, C.; Chen, M.; Sun, Y.; Lin, Q.; Zhu, L.; Li, F. Adv. Funct. Mater. 2014, 24, 363.
[52] Tian, M.; Cheng, R. D.; Zhang, J.; Liu, Z. T.; Liu, Z. W.; Jiang, J. Q. Langmuir 2015, 32, 12.
[53] Wang, Y. P.; Li, G.; Cheng, R. D.; Zhang, X.; Jiang, J. Q. Colloid Polym Sci. 2017, 295, 371.
[54] Dorresteijn, R.; Billecke, N.; Parekh, S. H.; Klapper, M.; Müllen, K. J. Polym. Sci., Part A:Polym. Chem. 2015, 53, 200.
[55] Yu, G.; Yu, W.; Mao, Z.; Gao, C.; Huang, F. Small 2015, 11, 919.
[56] Barman, S.; Mukhopadhyay, S. K.; Behara, K. K.; Dey, S.; Singh, N. D. ACS Appl. Mater. Inter. 2014, 6, 7045.
[57] Jana, A.; Devi, K. S.; Maiti, T. K.; Singh, N. D. J. Am. Chem. Soc. 2012, 134, 7656.
[58] Jana, A.; Nguyen, K. T.; Li, X.; Zhu, P.; Tan, N. S.; Ågren, H.; Zhao, Y. ACS Nano 2014, 8, 5939.
[59] Knezevic, N. Z.; Trewyn, B. G.; Lin, V. S. Chem. Commun. 2011, 47, 2817.
[60] Ding, Y.; Yu, Y.; Wei, J. Acta Chim. Sinica 2014, 72, 602(in Chinese). (丁妍春, 俞燕蕾, 韦嘉, 化学学报, 2014, 72, 602.)
[61] Pan, G.; Feng, Z.; Wei, J.; Yu, Y. Acta Chim. Sinica 2013, 71, 733(in Chinese). (潘高翔, 冯泽, 韦嘉, 俞燕蕾, 化学学报, 2013, 71, 733.)
[62] Aleandri, S.; Speziale, C.; Mezzenga, R.; Landau, E. M. Langmuir 2015, 31, 6981.
[63] Pianowski, Z. L.; Karcher, J.; Schneider, K. Chem. Commun. 2016, 52, 3143.
[64] Li, H.; Wang, J.; Ni, Y.; Zhou, Y.; Yan, D. Acta Chim. Sinica 2016, 74, 415(in Chinese). (李惠梅, 王洁, 倪云洲, 周永丰, 颜德岳, 化学学报, 2016, 74, 415.)
[65] Zhao, Q.; Wang, Y.; Yan, Y.; Huang, J. ACS Nano 2014, 8, 11341.
[66] Shao, L.; Hua, B.; Sun, J. F.; Li, Q.; Yang, J.; Yu, G. C. Tetrahedron Lett. 2017, 58, 1863.
[67] Croissant, J.; Chaix, A.; Mongin, O.; Wang, M.; Clement, S.; Raehm, L.; Durand, J. O.; Hugues, V.; Blanchard-Desce, M.; Maynadier, M.; Gallud, A.; Gary-Bobo, M.; Garcia, M.; Lu, J.; Tamanoi, F.; Ferris, D. P.; Tarn, D.; Zink, J. I. Small 2014, 10, 1752.
[68] Yan, H.; Teh, C.; Sreejith, S.; Zhu, L.; Kwok, A.; Fang, W.; Ma, X.; Nguyen, K. T.; Korzh, V.; Zhao, Y. Angew. Chem., Int. Ed. 2012, 51, 8373.
[69] Zhao, J. W.; He, Z. S.; Li, B.; Cheng, T. Y.; Liu, G. H. Mater. Sci. Eng. C 2017, 73, 1.
[70] Cao, P. F.; Su, Z.; de Leon, A.; Advincula, R. C. ACS Macro Lett. 2015, 4, 58.
[71] Wang, Y.; Li, B.; Zhang, L.; Song, H.; Zhang, L. ACS Appl. Mater. Inter. 2013, 5, 11.
[72] Moorthy, M. S.; Kim, H. B.; Bae, J. H.; Kim, S. H.; Ha, C. S. RSC Adv. 2016, 6, 29106.
[73] Klajn, R. Chem. Soc. Rev. 2013, 43, 148.
[74] Ma, L.; Li, J.; Han, D.; Geng, H.; Chen, G.; Li, Q. Macromol. Chem. Phys. 2013, 214, 716.
[75] Wang, B.; Chen, K.; Yang, R.; Yang, F.; Liu, J. Carbohydr. Polym. 2014, 103, 510.
[76] Schenderlein, H.; Voss, A.; Stark, R. W.; Biesalski, M. Langmuir 2013, 29, 4525.
[77] Khakzad, F.; Mahdavian, A. R.; Salehi, M. H.; Rezaee Shirin-Abadi, A.; Cunningham, M. Polymers 2016, 101, 274.
[78] Tong, R.; Hemmati, H. D.; Langer, R.; Kohane, D. S. J. Am. Chem. Soc. 2012, 134, 8848.
[79] Chen, S.; Jiang, F.; Cao, Z.; Wang, G.; Dang, Z. M. Chem. Commun. 2015, 51, 12633.
[80] Rosario, R.; Gust, D.; Hayes, M.; Jahnke, F.; Springer, J.; Garcia, A. A. Langmuir 2002, 18, 8062.
[81] Dattilo, D.; Armelao, L.; Fois, G.; Mistura, G.; Maggini, M. Langmuir 2008, 23, 12945.
[82] Chen, L.; Wang, W.; Su, B.; Wen, Y.; Li, C.; Zhou, Y.; Li, M.; Shi, X.; Du, H.; Song, Y. ACS Nano 2014, 8, 744.
[83] Goodwin, A. P.; Mynar, J. L.; Ma, Y.; And, G. R. F.; Fréchet, J. M. J. J. Am. Chem. Soc. 2005, 127, 9952.
[84] Tian, F.; Yu, Y.; Wang, C.; Yang, S. Macromolecules 2008, 41, 3385.
[85] Chen, C. J.; Liu, G. Y.; Shi, Y. T.; Zhu, C. S.; Pang, S. P.; Liu, X. S.; Ji, J. Macromol. Rapid Commun. 2011, 32, 1077.
[86] Yuan, Y.; Wang, Z.; Cai, P.; Liu, J.; Liao, L. D.; Hong, M.; Chen, X.; Thakor, N.; Liu, B. Nanoscale 2015, 7, 3067.
[87] Liu, G. Y.; Chen, C. J.; Li, D. D.; Wang, S. S.; Ji, J. J. Mater. Chem. 2012, 22, 16865.
[88] Goodwin, A. P.; Mynar, J. L.; Ma, Y.; Fleming, G. R.; Fréchet, J. M. J. Am. Chem. Soc. 2005, 127, 9952.
[89] Mynar, J. L.; Goodwin, A. P.; Cohen, J. A.; Ma, Y.; Fleming, G. R.; Fréchet, J. M. Chem. Commun. 2007, 20, 2081.
[90] Sun, L.; Zhu, B.; Su, Y.; Dong, C. M. Polym. Chem. 2014, 5, 1605.
[91] Li, Y.; Xiao, K.; Zhu, W.; Deng, W.; Lam, K. S. Adv. Drug Deliv. Rev. 2014, 66, 58.
[92] O'Reilly, R. K.; Hawker, C. J.; Wooley, K. L. Chem. Soc. Rev. 2006, 35, 1068.
[93] Talelli, M.; Barz, M.; Rijcken, C. J.; Kiessling, F.; Hennink, W. E.; Lammers, T. Nano Today 2015, 10, 93.
[94] Chung, C. M.; Roh, Y. S.; Cho, S. Y.; Kim, J. G. Chem. Mater. 2004, 16, 3982.
[95] Yusa, S.; Sugahara, M.; Endo, T.; Morishima, Y. Langmuir 2009, 25, 5258.
[96] Sandholzer, M.; Bichler, S.; Stelzer, F.; Slugovc, C. J. Polym. Sci., Part A:Polym. Chem. 2008, 46, 2402.
[97] Trenor, S. R.; Shultz, A. R.; Love, B. J.; Long, T. E. Chem. Rev. 2004, 104, 3059.
[98] Maddipatla, M.; Wehrung, D.; Tang, C.; Fan, W.; Oyewumi, M. O.; Miyoshi, T.; Joy, A. Macromolecules 2013, 46, 5133.
[99] Fan, W.; Li, M.; Hong, C.; Pan, C. Acta Chim. Sinica 2015, 73, 330(in Chinese). (范溦, 李敏, 洪春雁, 潘才元, 化学学报, 2015, 73, 330.)
[100] Wang, Q.; Cheng, M.; Jiang, J. L.; Wang, L. Y. Chin. Chem. Lett. 2017, 28, 793.
[101] Zhao, Y.; Bertrand, J.; Tong, X.; Zhao, Y. Langmuir 2009, 25, 13151.
[102] Jiang, J.; Qi, B.; Lepage, M. A.; Zhao, Y. Macromolecules 2007, 40, 790.
[103] He, J.; Yan, B.; Tremblay, L.; Zhao, Y. Langmuir 2011, 27, 436.
[104] He, J.; Xia, T.; Tremblay, L.; Zhao, Y. Macromolecules 2009, 42, 7267.
[105] He, J.; Xia, T.; Zhao, Y. Macromolecules 2009, 42, 4845.
[106] Babin, J.; Lepage, M.; Zhao, Y. Macromolecules 2008, 41, 1246.
[107] Jin, Q.; Mitschang, F.; Agarwal, S. Biomacromolecules 2011, 12, 3684.
[108] Guo, A.; Liu, G.; Tao, J. Macromolecules 1996, 29, 2487.
[109] Ding, J.; Liu, G. Macromolecules 1998, 31, 6554.
[110] Ding, J.; Liu, G. Chem. Mater. 1998, 10, 537.
[111] Yang, H.; Lin, J.; Wang, Z.; Dicicco, A.; Lévy, D.; Keller, P. Macromolecules 2011, 44, 159.
[112] Xie, H.; He, M. J.; Deng, X. Y.; Du, L.; Fan, C. J.; Yang, K. K.; Wang, Y. Z. ACS Appl. Mater. Inter. 2016, 8, 9431.
/
〈 |
|
〉 |