综述

锂离子电池硅基负极粘结剂发展现状

  • 王晓钰 ,
  • 张渝 ,
  • 马磊 ,
  • 魏良明
展开
  • 教育部薄膜与微细加工重点实验室 上海交通大学电子信息与电气工程学院微纳电子学系 上海 200240
魏良明,男,1974年生,研究员.2004年在中科院长春应用化学研究所获得高分子化学与物理专业博士学位,同年进入上海交通大学电子信息与电气工程学院微纳电子学系工作至今.主要从事新一代高性能锂离子电池/超级电容器以及传感器的研究;王晓钰,女,1995年生,硕士生.2013年于电子科技大学微电子与固体电子学院攻读学士学位,2017年进入上海交通大学电子信息与电气工程学院微纳电子学系攻读硕士学位,主要进行锂离子电池与电池粘结剂的研究.

收稿日期: 2018-07-16

  网络出版日期: 2018-08-31

基金资助

项目受国家自然科学基金(No.51272155)资助.

Recent Development on Binders for Silicon-Based Anodes in Lithium-Ion Batteries

  • Wang Xiaoyu ,
  • Zhang Yu ,
  • Ma Lei ,
  • Wei Liangming
Expand
  • Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Department of Microelectronics and Nanoscience, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2018-07-16

  Online published: 2018-08-31

Supported by

Project supported by the National Natural Science Foundation of China (No. 51272155).

摘要

在锂离子电池负极材料的研究中,硅材料以其高达4200 mAh·g-1的理论比容量,成为近年来新能源电池领域的研究热点.但是在锂化/去锂化过程中,硅负极体积变化高达300%,导致快速的容量衰减和较短的循环寿命.目前硅负极改性最有效的方法之一,是通过粘结剂来保持活性物质、导电添加剂和集流体间的接触完整性,减少硅材料在充放电循环过程中体积变化引起的裂化和粉碎,保持硅负极的高容量,提升电池循环性能.基于硅材料作为锂离子电池负极的优异特性,以及目前锂离子电池粘结剂的发展,将针对锂离子电池硅基负极粘结剂做出系统讨论,描述不同粘结剂对电池性能的主要影响,为锂离子电池硅基负极粘结剂的开发和应用提供研究方向.

本文引用格式

王晓钰 , 张渝 , 马磊 , 魏良明 . 锂离子电池硅基负极粘结剂发展现状[J]. 化学学报, 2019 , 77(1) : 24 -40 . DOI: 10.6023/A18070272

Abstract

In the area of novel power sources, silicon anode in lithium-ion battery, with an ultrahigh theoretical specific capacity of 4200 mAh·g-1, has drawn numerous attentions and got to highlighting spot. Nevertheless, it suffers rapid capacity loss and short cyclability ascribed to the huge volume change during lithiation/delithiation process. So far, one of the most effective methods to ameliorate performances of silicon anode is to modify binders. In this way, the contact integrity among active materials, conductive additives and current collectors can be maintained, which may weaken the cracking and pulverization, keep high specific capacity as well as strengthen the cyclability of silicon anode. Considering both the advantages of silicon anode and the developments of binders, a review on silicon anode in lithium-ion battery will be demonstrated systematically. Besides, we describe the main effects of binders against battery performances. We hope that our review would provide research directions in the developments and applications of binders used in silicon anode of lithium-ion battery.

参考文献

[1] Armand, M.; Tarascon, J. M. Nature 2008, 451, 652.
[2] Tarascon, J. M.; Armand, M. Nature 2001, 414, 359.
[3] Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Energ. Environ. Sci. 2011, 4, 3243.
[4] Huggins, R. A.; Boukamp, B. A. J. Electrochem. Soc. 1984, 128, 725.
[5] Li, J.; Yang, C.; Zhang, J.; Zhang, X.; Xia, B. Acta Chim. Sinica 2010, 68, 646(in Chinese). (李佳, 杨传铮, 张建, 张熙贵, 夏保佳, 化学学报, 2010, 68, 646.)
[6] Zhao, L. J.; Zhao, Q.; Niu, Z. Q.; Liang, J.; Tao, Z. L.; Chen, J. Chinese J. Inorg. Chem. 2016, 32, 929.
[7] Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J.; Schalkwijk, W. V. Nat. Mater. 2005, 4, 366.
[8] Sharma, R. A. J. Electrochem. Soc. 1976, 123, 1763.
[9] Seefurth, R. N.; Sharma, R. A. J. Electrochem. Soc. 1977, 124, 1207.
[10] Hatchard, T. D.; Dahn, J. R. J. Electrochem. Soc. 2004, 151, A838.
[11] Deshpande, R.; Cheng, Y.-T.; Verbrugge, M. W. J. Power Sources 2010, 195, 5081.
[12] Kamali, A. R.; Fray, D. J. J. New Mater. Electrochem. Syst. 2010, 13, 147.
[13] Park, C. M.; Kim, J. H.; Kim, H.; Sohn, H. J. Chem. Soc. Rev. 2010, 39, 3115.
[14] Zhang, W.-J. J. Power Sources 2011, 196, 13.
[15] Wu, H.; Cui, Y. Nano Today 2012, 7, 414.
[16] Park, M. H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J. Nano Lett. 2009, 9, 3844.
[17] Song, T.; Xia, J.; Lee, J. H.; Lee, D. H.; Kwon, M. S.; Choi, J. M.; Wu, J.; Doo, S. K.; Chang, H.; Park, W. I.; Zang, D. S.; Kim, H.; Huang, Y.; Hwang, K. C.; Rogers, J. A.; Paik, U. Nano Lett. 2010, 10, 1710.
[18] Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L.; Cui, Y. Nat. Nanotechnol. 2012, 7, 310.
[19] Chen, W.; Lei, T.; Qian, T.; Lv, W.; He, W.; Wu, C.; Liu, X.; Liu, J.; Chen, B.; Yan, C.; Xiong, J. Adv. Energy Mater. 2018, 8, 1702889.
[20] Shi, F.; Song, Z.; Ross, P. N.; Somorjai, G. A.; Ritchie, R. O.; Komvopoulos, K. Nat. Commun. 2016, 7, 11886.
[21] Choi, S.; Kwon, T. W.; Coskun, A.; Choi, J. W. Science 2017, 357, 279.
[22] Ryu, J. H.; Kim, J. W.; Sung, Y.-E.; Oh, S. M. Electrochem. Solid-State Lett. 2004, 7, A306.
[23] Beaulieu, L. Y.; Eberman, K. W.; Turner, R. L.; Krause, L. J.; Dahn, J. R. Electrochem. Solid-State Lett. 2001, 4, A137.
[24] Timmons, A.; Dahn, J. R. J. Electrochem. Soc. 2006, 153, A1206.
[25] Verbrugge, M. W.; Cheng, Y.-T. J. Electrochem. Soc. 2009, 156, A927.
[26] Wu, H.; Zheng, G.; Liu, N.; Carney, T. J.; Yang, Y.; Cui, Y. Nano Lett. 2012, 12, 904.
[27] Yen, Y.-C.; Chao, S.-C.; Wu, H.-C.; Wu, N.-L. J. Electrochem. Soc. 2009, 156, A95.
[28] Feng, K.; Li, M.; Liu, W.; Kashkooli, A. G.; Xiao, X.; Cai, M.; Chen, Z. Small 2018, 14, 1702737.
[29] Peng, B.; Cheng, F.; Tao, Z.; Chen, J. J. Chem. Phys. 2010, 133, 034701.
[30] Wilson, A. M.; Dahn, J. R. J. Electrochem. Soc. 1995, 142, 326.
[31] Yang, J.; Winter, M.; Besenhard, J. O. Solid State Ionics 1996, 90, 281.
[32] Ma, H.; Cheng, F.; Chen, J. Y.; Zhao, J. Z.; Li, C. S.; Tao, Z. L.; Liang, J. Adv. Mater. 2007, 19, 4067.
[33] Kang, K.; Song, K.; Heo, H.; Yoo, S.; Kim, G.-S.; Lee, G.; Kang, Y.-M.; Jo, M.-H. Chem. Sci. 2011, 2, 1090.
[34] Hu, L.; Wu, H.; Hong, S. S.; Cui, L.; McDonough, J. R.; Bohy, S.; Cui, Y. Chem. Commun. (Camb) 2011, 47, 367.
[35] Ren, W.; Wang, C.; Lu, L.; Li, D.; Cheng, C.; Liu, J. J. Mater. Chem. A 2013, 1, 13433.
[36] Hong, L.; Huang, X.; Chen, L.; Zhou, G.; Zhang, Z.; Yu, D.; Yu, J. M.; Ning, P. Solid State Ionics 2000, 135, 181.
[37] Bridel, J. S.; Azaïs, T.; Morcrette, M.; Tarascon, J. M.; Larcher, D. Chem. Mater. 2010, 22, 1229.
[38] Du, J.; Lin, N.; Qian, Y. Acta Chim. Sinica 2017, 75, 147(in Chinese). (杜进, 林宁, 钱逸泰, 化学学报, 2017, 75, 147.)
[39] Anani, A.; Huggins, R. A. J. Power Sources 1992, 38, 351.
[40] Courtney, I. A.; Dahn, J. R. J. Electrochem. Soc. 1997, 144, 2045.
[41] Wilson, A. M.; Way, B. M.; Dahn, J. R.; van Buuren, T. J. Appl. Phys. 1995, 77, 2363.
[42] Saint, J.; Morcrette, M.; Larcher, D.; Laffont, L.; Beattie, S.; Pérès, J. P.; Talaga, D.; Couzi, M.; Tarascon, J. M. Adv. Funct. Mater. 2007, 17, 1765.
[43] Zhang, Y.; Zhu, Y.; Fu, L.; Meng, J.; Yu, N.; Wang, J.; Wu, Y. Chin. J. Chem. 2017, 35, 21.
[44] Kong, L.; Zhou, X.; Fan, S.; Li, Z.; Gu, Z. Acta Chim. Sinica 2016, 74, 620(in Chinese). (孔丽娟, 周晓燕, 范赛英, 李在均, 顾志国, 化学学报, 2016, 74, 620.)
[45] Chen, Z.; Christensen, L.; Dahn, J. R. Electrochem. Commun. 2003, 5, 919.
[46] Li, J.-T.; Wu, Z.-Y.; Lu, Y.-Q.; Zhou, Y.; Huang, Q.-S.; Huang, L.; Sun, S.-G. Adv. Energy Mater. 2017, 7, 1701185.
[47] Magasinski, A.; Zdyrko, B.; Kovalenko, I.; Hertzberg, B.; Burtovyy, R.; Huebner, C. F.; Fuller, T. F.; Luzinov, I.; Yushin, G. ACS Appl. Mater. Interfaces 2010, 2, 3004.
[48] Du, L.; Zhuang, Q.; Wei, T.; Shi, Y.; Qiang, Y.; Sun, S. Acta Chim. Sinica 2011, 69, 2641(in Chinese). (杜莉莉, 庄全超, 魏涛, 史月丽, 强颖怀, 孙世刚, 化学学报, 2011, 69, 2641.)
[49] Hochgatterer, N. S.; Schweiger, M. R.; Koller, S.; Raimann, P. R.; Wöhrle, T.; Wurm, C.; Winter, M. Electrochem. Solid-State Lett. 2008, 11, A76.
[50] Kang, Y.-M.; Go, J.-Y.; Lee, S.-M.; Choi, W.-U. Electrochem. Commun. 2007, 9, 1276.
[51] Kim, I.-s.; Blomgren, G. E.; Kumta, P. N. Electrochem. Solid-State Lett. 2004, 7, A44.
[52] Kim, I.-S.; Kumta, P. N. J. Power Sources 2004, 136, 145.
[53] Li, J.; Christensen, L.; Obrovac, M. N.; Hewitt, K. C.; Dahn, J. R. J. Electrochem. Soc. 2008, 155, A234.
[54] Xu, Y.; Yin, G.; Ma, Y.; Zuo, P.; Cheng, X. J. Power Sources 2010, 195, 2069.
[55] Santimetaneedol, A.; Tripuraneni, R.; Chester, S. A.; Nadimpalli, S. P. V. J. Power Sources 2016, 332, 118.
[56] Grillet, A. M.; Humplik, T.; Stirrup, E. K.; Roberts, S. A.; Barringer, D. A.; Snyder, C. M.; Janvrin, M. R.; Apblett, C. A. J. Electrochem. Soc. 2016, 163, A1859.
[57] Drofenik, J.; Gaberscek, M.; Dominko, R.; Poulsen, F. W.; Mogensen, M.; Pejovnik, S.; Jamnik, J. Electrochim. Acta 2003, 48, 883.
[58] Lestriez, B.; Bahri, S.; Sandu, I.; Roue, L.; Guyomard, D. Electrochem. Commun. 2007, 9, 2801.
[59] Li, J.; Lewis, R. B.; Dahn, J. R. Electrochem. Solid-State Lett. 2007, 10, A17.
[60] Mazouzi, D.; Lestriez, B.; Roué, L.; Guyomard, D. Electrochem. Solid-State Lett. 2009, 12, A215.
[61] Chen, L.; Xie, X.; Xie, J.; Wang, K.; Yang, J. J. Appl. Electrochem. 2006, 36, 1099.
[62] Beattie, S. D.; Larcher, D.; Morcrette, M.; Simon, B.; Tarascon, J. M. J. Electrochem. Soc. 2008, 155, A158.
[63] Nguyen, C. C.; Yoon, T.; Seo, D. M.; Guduru, P.; Lucht, B. L. ACS Appl. Mater. Interfaces 2016, 8, 12211.
[64] Buqa, H.; Holzapfel, M.; Krumeich, F.; Veit, C.; Novák, P. J. Power Sources 2006, 161, 617.
[65] Lee, K.; Lim, S.; Go, N.; Kim, J.; Mun, J.; Kim, T. H. Sci. Rep. 2018, 8, 11322.
[66] Liu, Y.; Tai, Z.; Zhou, T.; Sencadas, V.; Zhang, J.; Zhang, L.; Konstantinov, K.; Guo, Z.; Liu, H. K. Adv. Mater. 2017, 29, 1703028.
[67] Karkar, Z.; Guyomard, D.; Roué, L.; Lestriez, B. Electrochim. Acta 2017, 258, 453.
[68] Hays, K. A.; Ruther, R. E.; Kukay, A. J.; Cao, P.; Saito, T.; Wood, D. L.; Li, J. J. Power Sources 2018, 384, 136.
[69] Yabuuchi, N.; Shimomura, K.; Shimbe, Y.; Ozeki, T.; Son, J.-Y.; Oji, H.; Katayama, Y.; Miura, T.; Komaba, S. Adv. Energy Mater. 2011, 1, 759.
[70] Han, Z.-J.; Yabuuchi, N.; Shimomura, K.; Murase, M.; Yui, H.; Komaba, S. Energ. Environ. Sci. 2012, 5, 9014.
[71] Han, Z. J.; Yamagiwa, K.; Yabuuchi, N.; Son, J. Y.; Cui, Y. T.; Oji, H.; Kogure, A.; Harada, T.; Ishikawa, S.; Aoki, Y.; Komaba, S. Phys. Chem. Chem. Phys. 2015, 17, 3783.
[72] Komaba, S.; Yabuuchi, N.; Ozeki, T.; Han, Z.-J.; Shimomura, K.; Yui, H.; Katayama, Y.; Miura, T. J. Phys. Chem. C 2011, 116, 1380.
[73] Komaba, S.; Shimomura, K.; Yabuuchi, N.; Ozeki, T.; Yui, H.; Konno, K. J. Phys. Chem. C 2011, 115, 13487.
[74] Kang, S.; Yang, K.; White, S. R.; Sottos, N. R. Adv. Energy Mater. 2017, 7, 1700045.
[75] Koo, B.; Kim, H.; Cho, Y.; Lee, K. T.; Choi, N. S.; Cho, J. Angew. Chem. Int. Ed. Engl. 2012, 51, 8762.
[76] Wei, L.; Chen, C.; Hou, Z.; Wei, H. Sci. Rep. 2016, 6, 19583.
[77] Song, J.; Zhou, M.; Yi, R.; Xu, T.; Gordin, M. L.; Tang, D.; Yu, Z.; Regula, M.; Wang, D. Adv. Funct. Mater. 2014, 24, 5904.
[78] Lee, K.; Lim, S.; Tron, A.; Mun, J.; Kim, Y.-J.; Yim, T.; Kim, T.-H. RSC Adv. 2016, 6, 101622.
[79] Lee, S.-Y.; Choi, Y.; Hong, K.-S.; Lee, J. K.; Kim, J.-Y.; Bae, J.-S.; Jeong, E. D. Appl. Surf. Sci. 2018, 447, 442.
[80] Zhang, G.; Yang, Y.; Chen, Y.; Huang, J.; Zhang, T.; Zeng, H.; Wang, C.; Liu, G.; Deng, Y. Small 2018, e1801189.
[81] Lü, L.; Lou, H.; Xiao, Y.; Zhang, G.; Wang, C.; Deng, Y. RSC Adv. 2018, 8, 4604.
[82] Lim, S.; Lee, K.; Shin, I.; Tron, A.; Mun, J.; Yim, T.; Kim, T.-H. J. Power Sources 2017, 360, 585.
[83] Kovalenko, I.; Zdyrko, B.; Magasinski, A.; Hertzberg, B.; Milicev, Z.; Burtovyy, R.; Luzinov, I.; Yushin, G. Science 2011, 334, 75.
[84] Liu, J.; Zhang, Q.; Wu, Z. Y.; Wu, J. H.; Li, J. T.; Huang, L.; Sun, S. G. Chem. Commun. (Camb) 2014, 50, 6386.
[85] Yoon, J.; Oh, D. X.; Jo, C.; Lee, J.; Hwang, D. S. Phys. Chem. Chem. Phys. 2014, 16, 25628.
[86] Zhang, L.; Zhang, L.; Chai, L.; Xue, P.; Hao, W.; Zheng, H. J. Mater. Chem. A 2014, 2, 19036.
[87] Gu, Y.; Yang, S.; Zhu, G.; Yuan, Y.; Qu, Q.; Wang, Y.; Zheng, H. Electrochim. Acta 2018, 269, 405.
[88] Wu, Z.-Y.; Deng, L.; Li, J.-T.; Huang, Q.-S.; Lu, Y.-Q.; Liu, J.; Zhang, T.; Huang, L.; Sun, S.-G. Electrochim. Acta 2017, 245, 371.
[89] Kim, S.; Jeong, Y. K.; Wang, Y.; Lee, H.; Choi, J. W. Adv. Mater. 2018, 30, e1707594.
[90] Kong, L. J.; Li, R. Y.; Yang, Y. Q.; Li, Z. J. RSC Adv. 2016, 6, 76344.
[91] Gendensuren, B.; Oh, E.-S. J. Power Sources 2018, 384, 379.
[92] Ibezim, E. C.; Andrade, C. T.; Marcia, C.; Barretto, B.; Odimegwu, D. C.; Lima, F. F. D. Ibnosina J Med BS. 2011, 3, 77.
[93] Yue, L.; Zhang, L.; Zhong, H. J. Power Sources 2014, 247, 327.
[94] Wu, Z.-H.; Yang, J.-Y.; Yu, B.; Shi, B.-M.; Zhao, C.-R.; Yu, Z.-L. Rare Metals 2016.
[95] Lee, S. H.; Lee, J. H.; Nam, D. H.; Cho, M.; Kim, J.; Chanthad, C.; Lee, Y. ACS Appl. Mater. Interfaces 2018, 10, 16449.
[96] Biwer, A.; Antranikian, G.; Heinzle, E. Appl. Microbiol. Biotechnol. 2002, 59, 609.
[97] Jeong, Y. K.; Kwon, T. W.; Lee, I.; Kim, T. S.; Coskun, A.; Choi, J. W. Nano Lett. 2014, 14, 864.
[98] Kwon, T. W.; Jeong, Y. K.; Deniz, E.; Alqaradawi, S. Y.; Choi, J. W.; Coskun, A. ACS Nano 2015, 9, 11317.
[99] Ling, M.; Xu, Y.; Zhao, H.; Gu, X.; Qiu, J.; Li, S.; Wu, M.; Song, X.; Yan, C.; Liu, G.; Zhang, S. Nano Energy 2015, 12, 178.
[100] Ling, M.; Zhao, H.; Xiao, X.; Shi, F.; Wu, M.; Qiu, J.; Li, S.; Song, X.; Liu, G.; Zhang, S. J. Mater. Chem. A 2015, 3, 2036.
[101] Liu, J.; Zhang, Q.; Zhang, T.; Li, J.-T.; Huang, L.; Sun, S.-G. Adv. Funct. Mater. 2015, 25, 3599.
[102] Dufficy, M. K.; Khan, S. A.; Fedkiw, P. S. J. Mater. Chem. A 2015, 3, 12023.
[103] Kuruba, R.; Datta, M. K.; Damodaran, K.; Jampani, P. H.; Gattu, B.; Patel, P. P.; Shanthi, P. M.; Damle, S.; Kumta, P. N. J. Power Sources 2015, 298, 331.
[104] Chen, D.; Yi, R.; Chen, S.; Xu, T.; Gordin, M. L.; Wang, D. Solid State Ionics 2014, 254, 65.
[105] Jeong, Y. K.; Kwon, T.-w.; Lee, I.; Kim, T.-S.; Coskun, A.; Choi, J. W. Energ. Environ. Sci. 2015, 8, 1224.
[106] Klamor, S.; Schroder, M.; Brunklaus, G.; Niehoff, P.; Berkemeier, F.; Schappacher, F. M.; Winter, M. Phys. Chem. Chem. Phys. 2015, 17, 5632.
[107] Bie, Y.; Yang, J.; Nuli, Y.; Wang, J. J. Mater. Chem. A 2017, 5, 1919.
[108] Yoon, D. E.; Hwang, C.; Kang, N. R.; Lee, U.; Ahn, D.; Kim, J. Y.; Song, H. K. ACS Appl. Mater. Interfaces 2016, 8, 4042.
[109] Zhao, X.; Yim, C.-H.; Du, N.; Abu-Lebdeh, Y. Ind. Eng. Chem. Res. 2018, 57, 9062.
[110] Zhao, H.; Wei, Y.; Wang, C.; Qiao, R.; Yang, W.; Messersmith, P. B.; Liu, G. ACS Appl. Mater. Interfaces 2018, 10, 5440.
[111] Liu, G.; Xun, S.; Vukmirovic, N.; Song, X.; Olalde-Velasco, P.; Zheng, H.; Battaglia, V. S.; Wang, L.; Yang, W. Adv. Mater. 2011, 23, 4679.
[112] Wu, H.; Yu, G.; Pan, L.; Liu, N.; McDowell, M. T.; Bao, Z.; Cui, Y. Nat. Commun. 2013, 4, 1943.
[113] Zhao, S.; Yao, C.; Sun, L.; Xian, X. Ionics 2017, 24, 1039.
[114] Shao, D.; Zhong, H.; Zhang, L. ChemElectroChem 2014, 1, 1679.
[115] Higgins, T. M.; Park, S. H.; King, P. J.; Zhang, C. J.; McEvoy, N.; Berner, N. C.; Daly, D.; Shmeliov, A.; Khan, U.; Duesberg, G.; Nicolosi, V.; Coleman, J. N. ACS Nano 2016, 10, 3702.
[116] Zeng, W.; Wang, L.; Peng, X.; Liu, T.; Jiang, Y.; Qin, F.; Hu, L.; Chu, P. K.; Huo, K.; Zhou, Y. Adv. Energy Mater. 2018, 8, 1702314.
[117] Wang, L.; Liu, T.; Peng, X.; Zeng, W.; Jin, Z.; Tian, W.; Gao, B.; Zhou, Y.; Chu, P. K.; Huo, K. Adv. Funct. Mater. 2018, 28, 1704858.
[118] Liu, B.; Soares, P.; Checkles, C.; Zhao, Y.; Yu, G. Nano Lett. 2013, 13, 3414.
[119] Park, S. J.; Zhao, H.; Ai, G.; Wang, C.; Song, X.; Yuca, N.; Battaglia, V. S.; Yang, W.; Liu, G. J. Am. Chem. Soc. 2015, 137, 2565.
[120] Zhao, Y.; Yang, L.; Zuo, Y.; Song, Z.; Liu, F.; Li, K.; Pan, F. ACS Appl. Mater. Interfaces 2018, 10, 27795.
[121] Park, H.-K.; Kong, B.-S.; Oh, E.-S. Electrochem. Commun. 2011, 13, 1051.
[122] Yook, S.-H.; Kim, S.-H.; Park, C.-H.; Kim, D.-W. RSC Adv. 2016, 6, 83126.
[123] Liu, Z.; Han, S.; Xu, C.; Luo, Y.; Peng, N.; Qin, C.; Zhou, M.; Wang, W.; Chen, L.; Okada, S. RSC Adv. 2016, 6, 68371.
[124] Jeena, M. T.; Bok, T.; Kim, S. H.; Park, S.; Kim, J. Y.; Park, S.; Ryu, J. H. Nanoscale 2016, 8, 9245.
[125] Kim, J. S.; Choi, W.; Cho, K. Y.; Byun, D.; Lim, J.; Lee, J. K. J. Power Sources 2013, 244, 521.
[126] Yao, D.; Yang, Y.; Deng, Y.; Wang, C. J. Power Sources 2018, 379, 26.
[127] Choi, N.-S.; Yew, K. H.; Choi, W.-U.; Kim, S.-S. J. Power Sources 2008, 177, 590.
[128] Zhu, X.; Zhang, F.; Zhang, L.; Zhang, L.; Song, Y.; Jiang, T.; Sayed, S.; Lu, C.; Wang, X.; Sun, J.; Liu, Z. Adv. Funct. Mater. 2018, 28, 1705015.
[129] Shan, C.; Wu, K.; Yen, H. J.; Narvaez Villarrubia, C.; Nakotte, T.; Bo, X.; Zhou, M.; Wu, G.; Wang, H. L. ACS Appl. Mater. Interfaces 2018, 10, 15665.
[130] Zhang, Z.; Jiang, Y.; Peng, Z.; Yang, S.; Lin, H.; Liu, M.; Wang, D. ACS Appl. Mater. Interfaces 2017, 9, 32775.

文章导航

/