研究展望

近红外二区活体成像技术及其应用研究进展

  • 罗兴蕊 ,
  • 陈敏文 ,
  • 杨晴来
展开
  • a 南华大学 肿瘤研究所 药物药理研究所 衡阳 421001;
    b 上海交通大学医学院附属仁济医院 分子医学研究院 上海 200127;
    c 深圳清华大学研究院 深圳 518057
罗兴蕊,本科毕业于南华大学,现为南华大学与上海交通大学医学院附属仁济医院联合培养在读研究生,目前的研究方向为有机合成,具体从事含氟有机化合物的合成及活性测定,有机荧光探针的合成及生物成像研究;陈敏文,硕士毕业于南昌大学,现为深圳清华大学研究院等离子体纳米生物芯片研发中心科研项目主管,目前主要从事肿瘤生物标志物筛选和生物成像检测研究;杨晴来,现为上海交通大学附属仁济医院副研究员,硕士生导师.博士毕业于上海交通大学,随后进入深圳清华大学研究院从事博士后研究.长期从事近红外二区有机分子探针,核酸适配体-核素偶联物PET分子探针及生物成像研究.

收稿日期: 2020-02-26

  网络出版日期: 2020-04-10

基金资助

项目受国家自然科学基金(No.81801749)和深圳市基础研究项目(Nos.JCYJ20170307151634428,JCYJ20170817152825894)资助.

Research Progress on Near Infrared II Technology for in Vivo Imaging

  • Luo Xingrui ,
  • Chen Minwen ,
  • Yang Qinglai
Expand
  • a Cancer Research Institute of Medical College, and Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001;
    b Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127;
    c Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057

Received date: 2020-02-26

  Online published: 2020-04-10

Supported by

Project supported by the National Natural Science Foundation of China (No. 81801749) and Shenzhen Basic Research Funding (Nos. JCYJ20170307151634428, JCYJ20170817152825894).

摘要

近红外二区(NIR Ⅱ,1000~1700 nm)生物成像作为近年来新生的光学成像技术,相对于传统的近红外一区(NIR I,750~900 nm)和可见光(Vis,400~750 nm)成像,由于其荧光波长更长,生物组织的自发荧光背景更低,光子散射值更低,其组织穿透深度更深,该技术更适合于活体原位成像.本文综述了近红外二区荧光成像技术的发展及其在活体成像方面的应用,总结了各项技术的特点,最后对该研究方向的发展前景进行了展望,指出通过化学材料、光电仪器和多模态技术等多方面的持续发展,有望推动近红外二区活体成像技术的临床转化.

本文引用格式

罗兴蕊 , 陈敏文 , 杨晴来 . 近红外二区活体成像技术及其应用研究进展[J]. 化学学报, 2020 , 78(5) : 373 -381 . DOI: 10.6023/A20020045

Abstract

Near infrared II (NIR Ⅱ, 1000~1700 nm) biological imaging, as a new developing optical imaging technology in recent years, has longer fluorescence wavelength compared with the traditional near infrared I (NIR I, 750~900 nm) and visible light (Vis, 400~750 nm) imaging. Due to the longer emission wavelength, weaker interference by light scattering and tissue autofluorescence, result in higher temporal and spatial resolution with deeper tissue penetration. This technology is more suitable for in vivo imaging in situ. In this review, we mainly introduced research progress on NIR II instrument technology for in vivo imaging, and summarized its major features. Finally, we provided a prospect that the development of chemical materials, optoelectronic instruments, and multi-modal technologies can promote NIR II technology innovation, which is expected to be widely and deeply applied in clinical transformation.

参考文献

[1] Zanzonico, P. B. Health Phys. 2019, 116, 135.
[2] Grespan, L.; Fiorini, P.; Colucci, G. In The Route to Patient Safety in Robotic Surgery. Springer Tracts in Advanced Robotics, Springer, Cham, Switzerland, 2019, Vol. 126, p. 81.
[3] Weissleder, R. Nat. Biotechnol. 2001, 19, 316.
[4] Xia, L.; Cheng, Z.; Zhu, H.; Yang, Z. Acta Chim. Sinica 2019, 77, 172(in Chinese). (夏雷, 程震, 朱华, 杨志, 化学学报, 2019, 77, 172.)
[5] Zhang, Y.; Wang, Z. L.; Tao, Y.; Xu, X.; Fang, H.; Wang, S. F. Chin. J. Org. Chem. 2018, 38, 2693(in Chinese). (张燕, 王忠龙, 陶钰, 徐徐, 方华, 王石发, 有机化学, 2018, 38, 2693.)
[6] Zhang, Y. Y.; Wu, M. H.; Wu, M. J.; Guo, L. P.; Cao, L.; Wu, H. Y.; Zhang, X. N. Acta Chim. Sinica 2018, 76, 709(in Chinese). (张燕燕, 武明豪, 武明杰, 国林沛, 曹琳, 吴虹仪, 张雪宁, 化学学报, 2018, 76, 709.)
[7] Frangioni, J. Curr. Opin. Chem. Biol. 2003, 7, 626.
[8] Rao, J.; Dragulescu-Andrasi, A.; Yao, H. Curr. Opin. Biotechnol. 2007, 18, 17.
[9] Hou, J. T.; Li, K.; Qin, C. Q.; Yu, X. Q. Chin. J. Org. Chem. 2018, 38, 612(in Chinese). (后际挺, 李坤, 覃彩芹, 余孝其, 有机化学, 2018, 38, 612.)
[10] Yang, L. M.; Liu, B.; Li, N.; Tang, B. Acta Chim. Sinica 2017, 75, 1047(in Chinese). (杨立敏, 刘波, 李娜, 唐波, 化学学报, 2017, 75, 1047.)
[11] Ji, G.; Yan, L. L.; Wang, H.; Ma, L.; Xu, B.; Tian, W. J. Acta Chim. Sinica 2016, 74, 917(in Chinese). (纪光, 闫路林, 王慧, 马莲, 徐斌, 田文晶, 化学学报, 2016, 74, 917.)
[12] Pansare, V. J.; Hejazi, S.; Faenza, W. J.; Prud'homme, R. K. Chem. Mater. 2012, 24, 812.
[13] Ntziachristos, V. Annu. Rev. Biomed. Eng. 2006, 8, 1.
[14] Monici, M. Biotechnol. Ann. Rev. 2005, 11, 227.
[15] Diao, S.; Hong, G.; Antaris, A. L.; Blackburn, J. L.; Cheng, K.; Cheng, Z.; Dai, H. Nano Res. 2015, 8, 3027.
[16] Welsher, K.; Liu, Z.; Sherlock, S. P.; Robinson, J. T.; Chen, Z.; Daranciang, D.; Dai, H. Nat. Nanotechnol. 2009, 4, 773.
[17] Smith, A. M.; Mancini, M. C.; Nie, S. Nat. Nanotechnol. 2009, 4, 710.
[18] Lim, Y. T.; Kim, S.; Nakayama, A.; Stott, N. E.; Bawendi, M. G.; Frangioni, J. V. Mol. Imaging 2003, 2, 50.
[19] Hong, G.; Lee, J. C.; Robinson, J. T.; Raaz, U.; Xie, L.; Huang, N. F.; Cooke, J. P.; Dai, H. Nat. Med. 2012, 18, 1841.
[20] Dang, X.; Gu, L.; Qi, J.; Correa, S.; Zhang, G.; Belcher, A. M.; Hammond, P. T. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 5179.
[21] Hong, G.; Robinson, J. T.; Zhang, Y.; Diao, S.; Antaris, A. L.; Wang, Q.; Dai, H. Angew. Chem., Int. Ed. 2012, 124, 9956.
[22] Dong, B.; Li, C.; Chen, G.; Zhang, Y.; Zhang, Y.; Deng, M.; Wang, Q. Chem. Mater. 2013, 25, 2503.
[23] Xu, Y.; Zhao, Y.; Zhang, Y. J.; Cui, Z. F.; Wang, L. H.; Fan, C. H.; Gao, J. M.; Sun, Y. H. Acta Chim. Sinica 2018, 76, 393(in Chinese). (徐毅, 赵彦, 张叶俊, 崔之芬, 王丽华, 樊春海, 高基民, 孙艳红, 化学学报, 2018, 76, 393.)
[24] Naczynski, D. J.; Tan, M. C.; Zevon, M.; Wall, B.; Kohl, J.; Kulesa, A.; Chen, S.; Roth, C. M.; Riman, R. E.; Moghe, P. V. Nat. Commun. 2013, 4, 1.
[25] Wang, R.; Zhou, L.; Wang, W.; Li, X.; Zhang, F. Nat. Commun. 2017, 8, 1.
[26] Xiong, L.; Fan, Y.; Zhang, F. Acta Chim. Sinica 2019, 77, 1239(in Chinese). (熊麟, 凡勇, 张凡, 化学学报, 2019, 77, 1239.)
[27] Hong, G.; Zou, Y.; Antaris, A. L.; Diao, S.; Wu, D.; Cheng, K.; Zhang, X.; Chen, C.; Liu, B.; He, Y. Nat. Commun. 2014, 5, 4206.
[28] Wang, S.; Liu, J.; Feng, G.; Ng, L. G.; Liu, B. Adv. Funct. Mater. 2019, 29, 1808365.
[29] Antaris, A. L.; Chen, H.; Cheng, K.; Sun, Y.; Hong, G.; Qu, C.; Diao, S.; Deng, Z.; Hu, X.; Zhang, B.; Zhang, X.; Yaghi, O. K.; Alamparambil, Z. R.; Hong, X.; Cheng, Z.; Dai, H. Nat. Mater. 2016, 15, 235.
[30] Yang, Q.; Ma, Z.; Wang, H.; Zhou, B.; Zhu, S.; Zhong, Y.; Wang, J.; Wan, H.; Antaris, A.; Ma, R. Adv. Mater. 2017, 29, 1605497.
[31] Yang, Q.; Hu, Z.; Zhu, S.; Ma, R.; Ma, H.; Ma, Z.; Wan, H.; Zhu, T.; Jiang, Z.; Liu, W. J. Am. Chem. Soc. 2018, 140, 1715.
[32] Sun, G. F.; Liu, L. L. CN207123651U, 2018 (in Chinese). (孙国凤, 刘莉丽, CN207123651U, 2018.)
[33] Qian, J.; Yu, W. B.; Zhou, J. CN109324026A, 2019 (in Chinese). (钱骏, 虞文斌, 周静, CN109324026A, 2019.)
[34] Qian, J.; Yu, W. B.; Zang, H. Q. CN108414442A, 2018 (in Chinese). (钱骏, 虞文斌, 张鹤群, CN108414442A, 2018.)
[35] Qian, J.; Yu, W. B.; Zang, H. Q. CN108982443A, 2018 (in Chinese). (钱骏, 虞文斌, 张鹤群, CN108982443A, 2018.)
[36] Qian, J.; Yu, W. B. CN108982445A, 2018(in Chinese). (钱骏, 虞文斌, CN108982445A, 2018.)
[37] Tian, J.; Hu, Z. H.; Cao, C. G.; Zhang, Z. Y.; Cai, M. S. CN109480776A, 2019 (in Chinese). (田捷, 胡振华, 曹财广, 张泽宇, 蔡美山, CN109480776A, 2019.)
[38] Zhang, Z. H.; Cheng, Y.; Chen, H. CN108833883A, 2018 (in Chinese). (张朝晖, 程瑛, 陈浩, CN108833883A, 2018.)
[39] Welsher, K.; Sherlock, S. P.; Dai, H. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 8943.
[40] Wang, W.; Ma, Z.; Zhu, S.; Wan, H.; Yue, J.; Ma, H.; Ma, R.; Yang, Q.; Wang, Z.; Li, Q. Adv. Mater. 2018, 30, 1800106.
[41] Wan, H.; Ma, H.; Zhu, S.; Wang, F.; Tian, Y.; Ma, R.; Yang, Q.; Hu, Z.; Zhu, T.; Wang, W. Adv. Funct. Mater. 2018, 28, 1804956.
[42] Zhu, S.; Hu, Z.; Tian, R.; Yung, B. C.; Yang, Q.; Zhao, S.; Kiesewetter, D. O.; Niu, G.; Sun, H.; Antaris, A. L. Adv. Mater. 2018, 30, 1802546.
[43] Hong, G.; Diao, S.; Chang, J.; Antaris, A. L.; Chen, C.; Zhang, B.; Zhao, S.; Atochin, D. N.; Huang, P. L.; Andreasson, K. I. Nat. Photon. 2014, 8, 723.
[44] Hong, G.; Lee, J. C.; Jha, A.; Diao, S.; Nakayama, K. H.; Hou, L.; Doyle, T. C.; Robinson, J. T.; Antaris, A. L.; Dai, H.; Cooke, J. P.; Huang, N. F. Circ. Cardiovasc. Imag. 2014, 7, 517.
[45] Diao, S.; Hong, G.; Robinson, J. T.; Jiao, L.; Antaris, A. L.; Wu, J. Z.; Choi, C. L.; Dai, H. J. Am. Chem. Soc. 2012, 134, 16971.
[46] Zhang, X. D.; Wang, H.; Antaris, A. L.; Li, L.; Diao, S.; Ma, R.; Nguyen, A.; Hong, G.; Ma, Z.; Wang, J. Adv. Mater. 2016, 28, 6872.
[47] Tao, Z.; Hong, G.; Shinji, C.; Chen, C.; Diao, S.; Antaris, A. L.; Zhang, B.; Zou, Y.; Dai, H. Angew. Chem., Int. Ed. 2013, 125, 13240.
[48] In Encyclopedia of Microfluidics and Nanofluidics, Ed.:Li, D., Springer, New York, 2015, p. 473.
[49] Zhu, S.; Herraiz, S.; Yue, J.; Zhang, M.; Wan, H.; Yang, Q.; Ma, Z.; Wang, Y.; He, J.; Antaris, A. L.; Zhong, Y.; Diao, S.; Feng, Y.; Zhou, Y.; Yu, K.; Hong, G.; Liang, Y.; Hsueh, A. J.; Dai, H. Adv. Mater. 2018, 30, 1705799.
[50] Zhu, S.; Yang, Q.; Antaris, A. L.; Yue, J.; Ma, Z.; Wang, H.; Huang, W.; Wan, H.; Wang, J.; Diao, S. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 962.
[51] Wan, H.; Yue, J.; Zhu, S.; Uno, T.; Zhang, X.; Yang, Q.; Yu, K.; Hong, G.; Wang, J.; Li, L. Nat. Commun. 2018, 9, 1171.
[52] Yu, W.; Guo, B.; Zhang, H.; Zhou, J.; Yu, X.; Zhu, L.; Xue, D.; Liu, W.; Sun, X.; Qian, J. Sci. Bull. 2019, 64, 410.
[53] Wang, E.; Babbey, C.; Dunn, K. W. J. Microsc. 2005, 218, 148.
[54] Zubkovs, V.; Antonucci, A.; Schuergers, N.; Lambert, B.; Latini, A.; Ceccarelli, R.; Santinelli, A.; Rogov, A.; Ciepielewski, D.; Boghossian, A. A. Sci. Rep. 2018, 8, 1.
[55] Education in Microscopy and Digital Imaging. http://zeiss-campus.magnet.fsu.edu/articles/spinningdisk/introduction.html
[56] Albert, O.; Sherman, L.; Mourou, G.; Norris, T. V.; Vdovin, G. Opt. Lett. 2000, 25, 52.
[57] Masters, B. R.; So, P. T. Opt. Express. 2001, 8, 2.
[58] Wang, S.; Liu, J.; Goh, C. C.; Ng, L. G.; Liu, B. Adv. Mater. 2019, 31, 1904447.
[59] Huang, C. B.; Chen, H.; Li, F. Q.; An, S. Y. Chin. J. Org. Chem. 2019, 39, 2467(in Chinese). (黄池宝, 陈会, 李福琴, 安思雅, 有机化学, 2019, 39, 2467.)
[60] Wang, X. F.; Wei, C.; Li, X. Y.; Zheng, X. Y.; Geng, X. W.; Zhang, P. Z.; Li, X. L. Chin. J. Org. Chem. 2019, 39, 469(in Chinese). (王晓芬, 魏超, 李雪艳, 郑雪阳, 耿晓维, 张平竹, 李小六, 有机化学, 2019, 39, 469.)
[61] Xie, Z. D.; Fu, M. L.; Yin, B.; Zhu, Q. Chin. J. Org. Chem. 2018, 38, 1364(in Chinese). (谢振达, 付曼琳, 尹彪, 朱勍, 有机化学, 2018, 38, 1364.)
[62] Qi, J.; Sun, C.; Li, D.; Zhang, H.; Yu, W.; Zebibula, A.; Lam, J. W.; Xi, W.; Zhu, L.; Cai, F.; Wei, P.; Zhu, C.; Lina, L. R.; Prevedel, R. J.; Qian, J.; Tang, B. Z. ACS Nano 2018, 12, 7936.
[63] Voie, A. H.; Burns, D.; Spelman, F. J. Microsc. 1993, 170, 229.
[64] Huisken, J.; Swoger, J.; Del Bene, F.; Wittbrodt, J.; Stelzer, E. H. Science 2004, 305, 1007.
[65] Ten years of Methods. Nat. Methods 2014, 11, 1000.
[66] Huisken, J.; Stainier, D. Y. Development 2009, 136, 1963.
[67] Wang, F.; Wan, H.; Ma, Z.; Zhong, Y.; Sun, Q.; Tian, Y.; Qu, L.; Du, H.; Zhang, M.; Li, L.; Ma, H.; Luo, J.; Liang, Y.; Li, W. J.; Hong, G.; Liu, L.; Dai, H. Nat. Methods 2019, 16, 545.
[68] van Munster, E. B.; Gadella, T. W. J. Fluorescence Lifetime Imaging Microscopy (FLIM), Vol. 95., Ed.:Rietdorf, J., Springer, Heidelberg, Berlin, 2005, p. 143.
[69] Gadella Jr., T. W.; Jovin, T. M.; Clegg, R. M. Biophys. Chem. 1993, 48, 221.
[70] Bastiaens, P. I.; Squire, A. Trends Cell Biol. 1999, 9, 48.
[71] Fan, Y.; Wang, P.; Lu, Y.; Wang, R.; Zhou, L.; Zheng, X.; Li, X.; Piper, J. A.; Zhang, F. Nat. Nanotech. 2018, 13, 941.
[72] Boni, L.; David, G.; Mangano, A.; Dionigi, G.; Rausei, S.; Spampatti, S.; Cassinotti, E.; Fingerhut, A. Surg. Endosc. 2015, 29, 2046.
[73] Polom, K.; Murawa, D.; Rho, Y.; Nowaczyk, P.; Hünerbein, M.; Murawa, P. Cancer 2011, 117, 4812.
[74] Zhang, Y.-M.; Shi, R.; Hou, J.-C.; Liu, Z.-R.; Cui, Z.-L.; Li, Y.; Wu, D.; Shi, Y.; Shen, Z.-Y. J. Cancer Res. Clin. Oncol. 2017, 143, 51.
[75] Sun, Y.; Zeng, X.; Xiao, Y.; Liu, C.; Zhu, H.; Zhou, H.; Chen, Z.; Xu, F.; Wang, J.; Zhu, M. J.; Wu, M.; Tian, Zhang, H.; Deng, Z.; Cheng, Z.; Hong, X. Chem. Sci. 2018, 9, 2092.
[76] Tian, R.; Ma, H.; Yang, Q.; Wan, H.; Zhu, S.; Chandra, S.; Sun, H.; Kiesewetter, D. O.; Niu, G.; Liang, Y.; Chen, X. Chem. Sci. 2019, 10, 326.
[77] Kurbegovic, S.; Juhl, K.; Chen, H.; Qu, C.; Ding, B.; Leth, J. M.; Drzewiecki, K. T.; Kjaer, A.; Cheng, Z. Bioconjugate Chem. 2018, 29, 3833.
[78] Wang, P.; Fan, Y.; Lu, L.; Liu, L.; Fan, L.; Zhao, M.; Xie, Y.; Xu, C.; Zhang, F. Nat. Commun. 2018, 9, 1.
[79] Wen, Q.; Zhang, Y.; Li, C.; Ling, S.; Yang, X.; Chen, G.; Yang, Y.; Wang, Q. Angew. Chem., Int. Ed. 2019, 131, 11117.
[80] Carr, J. A.; Franke, D.; Caram, J. R.; Perkinson, C. F.; Saif, M.; Askoxylakis, V.; Datta, M.; Fukumura, D.; Jain, R. K.; Bawendi, M. G. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 4465.
[81] Yu, X.; Feng, Z.; Cai, Z.; Jiang, M.; Xue, D.; Zhu, L.; Zhang, Y.; Liu, J.; Que, B.; Yang, W. J. Mater. Chem. B 2019, 7, 6623.
[82] Xue, D.; Wu, D.; Lu, Z.; Zebibula, A.; Feng, Z.; Qian, J.; Li, G. bioRxiv 2020.
[83] Suo, Y.; Wu, F.; Xu, P.; Shi, H.; Wang, T.; Liu, H.; Cheng, Z. Adv. Healthc. Mater. 2019, 8, 1900974.
[84] Hu, Z.; Fang, C.; Li, B.; Zhang, Z.; Cao, C.; Cai, M.; Su, S.; Sun, X.; Shi, X.; Li, C.; Zhou, T.; Zhang, Y.; Chi, C.; He, P.; Xia, X.; Chen, Y.; Gambhir, S. S.; Cheng, Z.; Tian, J. Nat. Biomed. Eng. 2020, 4, 259.
[85] He, S.; Song, J.; Qu, J.; Cheng, Z. Chem. Soc. Rev. 2018, 47, 4258.
[86] Filatova, S. A.; Shcherbakov, I. A.; Tsvetkov, V. B. J. Biomed. Opt. 2017, 22, 035009.
[87] Patel, K. D. M.S. Thesis, Rutgers University, New Jersey, 2017.
[88] Golovynskyi, S.; Golovynska, I.; Stepanova, L. I.; Datsenko, O. I.; Liu, L.; Qu, J.; Ohulchanskyy, T. Y. J. Biophotonics 2018, 11, e201800141.
文章导航

/