综述

前列腺癌相关肿瘤标志物分析方法的研究进展

  • 马秋琳 ,
  • 冯楠 ,
  • 鞠熀先
展开
  • 南京大学化学化工学院 生命分析化学国家重点实验室 南京 210023
马秋琳,2017年本科毕业于北京师范大学化学学院,2017-2020年为南京大学化学化工学院硕士研究生,主要从事前列腺癌肿瘤标志物的检测方法研究.;冯楠,2016年本科毕业于南京大学化学化工学院,2016年至今在南京大学攻读博士学位,研究方向为生物质谱分析与质谱传感.;鞠熀先,1986、1989、1992年分别获南京大学理学学士、硕士、博士学位,后留校任教,1993年为副教授,1999年聘为教授、博士生导师.2003年获国家杰出青年科学基金,2007年遴选为"长江学者"特聘教授,2005~2014年主持国家自然科学基金创新研究群体项目、2009~2014年主持"973"计划项目.现为生命分析国家重点实验室主任、国际电化学会会士、英国皇家化学会会士.研究方向为分子诊断与生物分析化学,主要研究领域为免疫分析、细胞分析化学、纳米生物传感和临床分子诊断.至2020年9月,发表论文720篇,出版中英文专著11部,Web of Science检索他引31000多次,h-index为93(Google Scholar引用38000多次,h-index 102).

收稿日期: 2020-06-22

  网络出版日期: 2020-08-26

基金资助

项目受国家自然科学基金(Nos.21635005,21827812,21890741)资助.

Advances in Analytical Methodology of Prostate Cancer Markers

  • Ma Qiulin ,
  • Feng Nan ,
  • Ju Huangxian
Expand
  • State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China

Received date: 2020-06-22

  Online published: 2020-08-26

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21635005, 21827812, 21890741).

摘要

肿瘤标志物是在恶性肿瘤细胞中过表达的一类蛋白质,能反映肿瘤的发生、发展,并能监测肿瘤治疗的效果.因此,癌症患者血清中的肿瘤标志物的分析对于癌症状态的监测具有重要意义.常见的前列腺肿瘤标志物包括前列腺特异性抗原(PSA)、前列腺特异性膜抗原(PSMA)、α-甲酰基辅酶A消旋酶(AMACR,P504S)、前列腺酸性磷酸酶(PAP)和钙磷脂结合蛋白3(ANXA3)等.基于对前列腺肿瘤标志物的相关研究,本综述简要介绍了前列腺癌肿瘤标志物的组成、生物功能和生理意义,重点归纳了前列腺癌特异性抗原和前列腺酸性磷酸酶的检测技术,总结了当前前列腺癌肿瘤标志物检测技术的不足,并展望了前列腺癌肿瘤标志物检测在临床应用中的前景.

本文引用格式

马秋琳 , 冯楠 , 鞠熀先 . 前列腺癌相关肿瘤标志物分析方法的研究进展[J]. 化学学报, 2020 , 78(11) : 1213 -1222 . DOI: 10.6023/A20060259

Abstract

The detection of tumor markers plays an important role in the screening, early diagnosis and treatment of high-risk cancer patients. Prostatic cancer is one of the most common malignancies of the male genitourinary system, and has an increasing trend in recent years. Its morbidity is generally influenced by region and ethnicity. The common clinical markers of prostate cancer include prostate-specific antigen (PSA), prostate-specific membrane antigen (PSMA), alpha-formyl kievase A mesozyme (AMACR, P504S), prostate-acid phosphatase (PAP), and calcium phosphatidyl binding protein 3 (ANXA3). Most of these markers are composed of proteins or enzymes, which are produced by normal or cancerous prostate cells. Of these, prostate-specific antigen (PSA) and prostate-acid phosphatase (PAP) are considered to be the most meaningful markers of the prostatic cancer. Detection of PSA is widely used in the early detection and monitoring of prostate cancer patients, while analysis of PAP is often used to detect advanced prostate cancer metastases and evaluate the therapeutic effect. Therefore, the analysis of PSA and PAP in the human serum is of great significance for the monitoring of disease status in clinical diagnosis and treatment. In this review the recent advances in the methodological study for detection of prostate cancer markers are reviewed along with the description of their structures and biological functions. The detection technologies of prostate-specific antigen and prostate acid phosphatase are emphatically introduced, which mainly contain colorimetric techniques, electrochemical methods, fluorescence methods and surface resonance plasmon techniques. On the basis of summarizing the research progress in this field in recent decades, the future development of prostate cancer marker analysis is prospected. This review is expected to provide a useful guidance for the study of prostate cancer markers.

参考文献

[1] Han, S.-J.; Zhang, S.-W.; Chen, W.-Q.; Li, C.-L. Chin. J. Clin. Oncol. 2013, 18, 330(in Chinese). (韩苏军, 张思维, 陈万青, 李长岭, 临床肿瘤学杂志, 2013, 18, 330.)
[2] Wu, Q.-J.; Xu, J.-F. Shi, R. J. Shanghai Jiaotong Univ., Med. Sci. 2011, 31, 672(in Chinese). (吴琪俊, 徐剑锋, 施榕, 上海交通大学学报(医学版), 2011, 31, 672.)
[3] Cuzick, J.; Thorat, M. Lancet Oncol. 2014, 15, 484.
[4] Xiang, D.-C.; Liu, H.; Meng, Q.-H.; Lan, M.-B.; Wei, G. Acta Chim. Sinica 2013, 71, 1435(in Chinese). (向德成, 刘恒, 孟庆华, 蓝闽波, 卫钢, 化学学报, 2013, 71, 1435.)
[5] Zhang, Y.; Zhang, L.-Y.; Liu, L.-M.; Wang, T.; Meng, Y.-Q.; Li, N.; Li, E.-D.; Wang, Z.-J.; Liu, X.-J.; Zheng, J.-X.; Shan, L.-H.; Liu, H.-M.; Zhang, Q.-R. Chin. J. Org. Chem. 2020, 40, 1731.
[6] Liu, X.; Zhao, J.; Feng, C.-G. Acta Chim. Sinica 2006, 64, 1988(in Chinese). (刘霞, 赵军, 冯长根, 化学学报, 2006, 64, 1988.)
[7] He, Q.; Zhang, G.-H. Prog. Oncol. 2017, 15, 7(in Chinese). (何乾, 张国辉, 癌症进展, 2017, 15, 7.)
[8] Zhao, G.-C.; Wu, B.; Zhang, B.; Hu, C.-Y.; Jia, J.-D.; Wang, D.-W. J. Hainan Med. Univ. (in Chinese) 10.13210/j.cnki.jhmu.20200720.002(赵国臣, 吴波, 张彬, 胡操阳, 贾杰东, 王东文, 海南医学院学报. 2020.)
[9] Yan, H.-Y.; Xing, J.-C.; Zhang, K.-Y.; Wang, T.; Bai, P.-D. J. Clin. Urology (China) 2020, 35, 242(in Chinese). (闫厚煜, 邢金春, 张开颜, 王涛, 白培德, 临床泌尿外科杂志, 2020, 35, 242.)
[10] Ghorbania, F.; Abbaszadehb, H.; Dolatabadic, J. E. N.; Aghebati-Malekid, L.; Yousefi, M. Biosens. Bioelectron. 2019, 142, 111484.
[11] Vickers, A.; Cronin, A.; Roobol M. Clin. Cancer Res. 2010, 16, 4374.
[12] Lilja, H.; Oldbring, J.; Rannevik, G. J. Clin. Invest. 1987, 80, 281.
[13] Oesterling, J. J. Urol. 1991, 145, 907.
[14] Lilja, H.; Ulmert, D.; Vickers, A. J. Nat. Rev. 2008, 8, 268.
[15] Stenman, U. H.; Leinonen, J.; Zhang, W. M. Semin. Cancer Biol. 1999, 19, 83.
[16] Frydeberg, M.; Stricker, P. D.; Kaye, K. W. Lancet 2005, 349, 1681.
[17] Salman, J. W.; Schoots, I.; Carlsson, S. V. Adv. Exp. Med Biol. 2015, 867, 93.
[18] Desmée, S.; Mentré, F.; Veyrat-Follet, C. AAPS J. 2015, 17, 691.
[19] Chen, R.; Huang, Y. R.; Cai, X. B. PLoS One 2015, 10, 130308.
[20] Vickers, A. J.; Cronin, A. M.; Aus, G. Cancer 2010, 116, 2612.
[21] Denmeade, S. R.; Lou, W.; Lövgren, J.; Isaacs, J. T. Cancer Res. 1997, 57, 4924.
[22] Liu, D.; Huang, X.; Wang, F.; Ma, Y.; Niu, G.; Hight-Walker, A. R.; Chen, X. ACS Nano 2013, 7, 5568.
[23] Uludag, Y.; Tothill, I. E. Anal. Chem. 2012, 84, 5898.
[24] Triroj, N.; Jaroenapibal, P.; Beresford, R. Biosens. Bioelectron. 2011, 26, 2927.
[25] Liu, Z.-Y.; Yuan, R.; Chai, Y.-Q.; Zhuo, Y.; Hong, C.-L. Acta Chim. Sinica 2009, 67, 637(in Chinese). (刘中原, 袁若, 柴雅琴, 卓颖, 洪成林, 化学学报, 2009, 67, 637.)
[26] Xu, S. J.; Liu, Y.; Wang, T. H.; Li, J. H. Anal. Chem. 2011, 83, 3817.
[27] Wang, H. M.; Huang, X. Q.; Yuan, P.; Feng, P. Anal. Chim. Acta 2020, 1104, 53.
[28] Qi, H.; Li, M.; Dong, M. M.; Ruan, S.; Zhang, C. Anal. Chem. 2014, 86, 1372.
[29] Liu, S.; He, P.; Hussain, S.; Lu, H.; Zhou, X.; Lv, F.; Liu, L.; Dai, Z.; Wang, S. ACS Appl. Mater. Interfaces 2018, 10, 6618.
[30] Zhao, J.; Wang, S. P.; Zhang, S. B.; Zhao, P. N.; Wang, J. R.; Yan, M.; Ge, S. G.; Yu, J. H. Biosens. Bioelectron.2020, 150, 111958.
[31] Gao, C. M.; Yu, H. H.; Li, C. J.; Cui, K.; Yu, J. H. Anal. Chem. 2020, 92, 2902.
[32] Uludag, Y.; Tothill, I. E. Anal. Chem. 2012, 84, 5898.
[33] Shao, F. Y.; Zhang, L. H.; Jiao, L.; Wang, X. Y.; Miao, L. Y.; Li, H.; Zhou, F. M. Anal. Chem. 2018, 90, 8673.
[34] Kim, H. J.; Jang, C. H. Sens. Actuators, B 2019, 282, 574.
[35] Qi, L.; Hu, Q.; Kang, Q.; Bi, Y.; Jiang, Y.; Yu, L. Anal. Chem. 2019, 91, 11653.
[36] Qi, L. B.; Liu, S. Y.; Jiang, Y. F.; Lin, J. M.; Yu, L.; Hu, Q. Z. Anal. Chem. 2020, 92, 3867.
[37] Savory, N.; Abe, K.; Sode, K.; Ikebukuro, K. Biosens. Bioelectron. 2010, 26, 1386.
[38] Bull, H.; Murray, P. G.; Thomas, D.; Fraser, A.; Nelson, P. N. Mol. Pathol. 2002, 55, 65.
[39] Ozu, C.; Nakashima, J.; Horiguchi, Y.; Oya, M.; Ohigashi, T.; Murai, M. Int. J. Urol. 2008, 15, 419.
[40] Makarov, D. V.; Loeb, S.; Getzenberg, R. H.; Partin, A. W. Annu. Rev. Med. 2009, 60, 139.
[41] Dupont, A.; Cusan, L.; Gomez, J. L. J. Urol. 1991, 146, 1064.
[42] Sasamoto, H.; Maeda, M.; Tsuji, A.; Manita, H. Anal. Chim. Acta 1995, 309, 221.
[43] Hassan, S. S. M.; Sayour, H. E. M.; Kamel, A. H. Anal. Chim. Acta 2009, 640, 75.
[44] Guo, Y. Y.; Li, X. Q.; Dong, Y. M.; Wang, G. L. ACS Sustainable Chem. Eng. 2019, 7, 7572.
[45] Deng, H. H.; Lin, X. L.; Liu, Y. H.; Li, K. L.; Zhuang, Q. Q.; Peng, H. P.; Liu, A. L.; Xia, X. H.; Chen, W. Nanoscale 2017, 9, 10292.
[46] Huang, Y. Y.; Feng, H.; Liu, W. D.; Chen, J. R.; Qian, Z. S. Anal. Chem. 2016, 88, 11575.
[47] Sun, J.; Yang, F.; Yang, X. R. Nanoscale 2015, 7, 16372.
[48] Fan, Y. B.; Chen, D. Y. Acta Chim. Sinica 2014, 72, 1012(in Chinese). (范艳斌, 陈道勇, 化学学报, 2014, 72, 1012.)
[49] Tian, J. Y.; Yang, Y. T.; Lu, J. S. Biosens. Bioelectron. 2019, 135, 160.
[50] Li, H.; Xing, J. H.; Chen, J. Q. Carbon 2015, 81, 474.
[51] Li, Z. Z.; Xin, Y. M.; Zhang, Z. H. Anal. Chem. 2015, 87, 10491.
[52] Zhang, H.; Wang, G.; Lv, X. J.; Li, J. H. Chem. Mater. 2008, 20, 6543.
[53] Cao, S. W.; Yu, J. G. J. Phys. Chem. Lett. 2014, 5, 2101.
[54] Hu, S. Z.; Ma, L.; Liu, D.; Gui, J. Z. Appl. Surf. Sci. 2014, 311, 164.
[55] Martha, S.; Nashim, A.; Parida, K. M. J. Mater. Chem. A 2013, 1, 7816.
[56] Cui, Y. J.; Ding, Z. X.; Wang, X. C. Phys. Chem. Chem. Phys. 2012, 14, 1455.
[57] Lu, M. L.; Pei, Z. X.; Zheng, Z. Y.; Huang, M. L.; Liu, P. Phys. Chem. Chem. Phys. 2014, 16, 21280.
[58] Sumrra, S. H.; Kausar, S.; Raza, M. A.; Chohan, Z. H. J. Mol. Struct. 2018, 1168, 202.
[59] Zhao, S. F.; Gai, P. P.; Yu, W.; Li, H. Y.; Li, F. Chem. Commun. 2019, 55, 1887.
[60] Thorum, M. S.; Yadav, J.; Gewirth, A. A. Angew. Chem. Int. Ed. 2009, 48, 165.
[61] Zou, Q. J.; Kegel, L. L.; Booksh, K. S. Anal. Chem. 2015, 87, 2488.
[62] Huang, M.; Tian, J.; Zhou, C.; Lu, J. Sens. Actuators, B 2020, 307, 127654.
[63] Chen, C.; Liu, W.; Li, J.; Lu, Y.; Chen, W. ACS Appl. Mater. Interfaces 2019, 11, 47564.
[64] Lin, Z.; Zhang, X. M.; Liu, S. J.; Chen, R. T.; Lin, X.; Chen, W. Anal. Chim. Acta 2020, 1105, 162.
[65] Qian, Z. S.; Chai, L. J.; Zhou, Q.; Tang, C.; Chen, J. R.; Feng, H. Anal. Chem. 2015, 87, 7332.
[66] Qu, Z. Y.; Na, W. D.; Liu, X. T.; Liu, H.; Su, X. G. Anal. Chim. Acta 2018, 997, 52.
[67] Li, S. Q.; Hua, X.; Chen, Q. M.; Zhang, X. D.; Chai, H. X.; Huang, Y. M. Biosens. Bioelectron. 2019, 137, 133.
[68] Chen, Y. Y.; Wang, Z. Z.; Hao, X. L.; Li, F. L.; Zheng, Y. J.; Zhang, J. Z.; Lin, X. H.; Weng, S. H. Sens. Actuators, B 2019, 297, 126784.
[69] Liu, X. J.; Zhang, Y. S.; Liang, A. Y.; Ding, H. W.; Gai, H. W. Chem. Commun. 2019, 55, 11442.
[70] Liu, G. L.; Long, Y. T.; Choi, Y.; Kang, T.; Lee, L. P. Nat. Methods 2007, 4, 1015.
[71] Li, S. S.; Kong, Q. Y.; Zhang, M.; Yang, F.; Kang, B.; Xu, J. J.; Chen, H. Y. Anal. Chem. 2018, 90, 3833.
[72] Choi, Y.; Kang, T.; Lee, L. P. Nano Lett. 2009, 9, 85.
[73] Cao, Y.; Lin, Y.; Qian, R. C.; Ying, Y. L.; Si, W.; Sha, J. J.; Chen, Y. F.; Long, Y. T. Chem. Commun. 2016, 52, 5230.
[74] Yan, X.; Xia, C.; Gao, P. F.; Huang, C. Z. Anal. Chem. 2020, 92, 2130.
[75] Zhang, J.; Yuan, Y.; Han, Z.; Liu, G. B. Biosens. Bioelectron. 2019, 141, 111442.
[76] Feng, N.; Hu, J. J.; Ma, Q. L.; Ju, H. X. Biosens. Bioelectron. 2020, 157, 112159.
[77] Ma, Q. L.; Chen, Y. L.; Feng, N.; Yan, F.; Ju, H. X. Sci. China Chem. 2020, 63, 11426-020-9850-3.
文章导航

/