研究论文

单分子层受限冰-水共存界线毛细波与固-液相变动力学

  • 梁尊 ,
  • 张鑫 ,
  • 吕松泰 ,
  • 梁洪涛 ,
  • 杨洋
展开
  • a 华东师范大学 物理与电子科学学院 凝聚态物理研究所 上海 200241

收稿日期: 2020-09-13

  网络出版日期: 2020-11-24

基金资助

国家自然科学基金(11874147); 中央高校基本科研业务费专项资金和华东师范大学公共创新服务平台(001)

Crystal-Melt Interface Kinetics and the Capillary Wave Dynamics of the Monolayer Confined Ice-Water Coexistence Lines

  • Zun Liang ,
  • Xin Zhang ,
  • Songtai Lv ,
  • Hongtao Liang ,
  • Yang Yang
Expand
  • a School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China

Received date: 2020-09-13

  Online published: 2020-11-24

Supported by

the National Natural Science Foundation of China(11874147); the Fundamental Research Funds for the Central Universities, and East China Normal University Multifunctional Platform for Innovation(001)

摘要

冰-水界面动力学性质在冰形核、生长、表界面熔化中扮演核心角色, 长期以来一直被广泛关注. 然而, 受限水体系中冰-水界面的动力学性质却鲜有报道. 本工作利用平衡态分子动力学模拟方法和受限固-液两相平衡模拟技术, 对两种水模型(恒定偶极矩、可极化)描述的单分子层受限冰-水两相平衡体系中的一维固-液界线开展研究. 通过对一维受限冰-水界线的追踪, 计算了其热涨落波动的振幅与时间自关联函数色散谱, 进而计算一系列固-液界线动力学性质. 冰-水界线波动在短波长区域复合了快、慢两种不同时间尺度的弛豫过程, 在长波长区域则由慢弛豫过程主导. 相比块体冰-水界面体系, 以Rayleigh波为主的高频微观物理过程更多地参与了一维冰-水界线的动力学弛豫. 我们发现冰-水界线波动弛豫特征衰减时间的波矢依赖关系符合现有固-液界面动力学理论, 但一维界线弛豫的特征衰减时间比二维界面体系低了一个数量级左右. 计算了两种水模型体系冰-水界线的动力学系数, 并与块体冰-水界面比较, 发现受限冰-水(固-液)界线动力学系数远高于块体冰-水界面体系. 我们推测水分子转动自由度在受限腔中被强烈压制可能是导致受限体系超快冰-水(固-液)相变速率的主要原因. 本工作将在受限水体系超快相变(储能、传感)器件的设计工作中提供一定的理论指导意义.

本文引用格式

梁尊 , 张鑫 , 吕松泰 , 梁洪涛 , 杨洋 . 单分子层受限冰-水共存界线毛细波与固-液相变动力学[J]. 化学学报, 2021 , 79(1) : 108 -118 . DOI: 10.6023/A20090423

Abstract

The ice-water interface's kinetics has long been paid much attention because of its central role in ice nucleation, growth and surface/interface melting. However, there exist few studies focused on the kinetics of the confined ice-water interface. In this paper, we employ the equilibrium molecular dynamics simulation and the phase equilibrium technique for the confined water and ice to study the 1D crystal-melt coexistence line of an equilibrium mono-layer ice-water coexistence system, described by two well-known water molecule models, i.e., constant dipole moment TIP4P/2005 model and polarizable SWM4-NDP water model. The mono-layer ice-water phase equilibria are confined in the hydrophobic slab pore of 0.65 nm, under 0.5 GPa lateral pressure. By tracking the 1D ice-water coexistence line's position, we calculate the power spectrum of the equilibrium line fluctuation and the time-dependent autocorrelation function of the line fluctuation Fourier amplitudes and then calculate a series of kinetic properties of the 1D crystal-melt coexistence line. We demonstrate that the processes involved in the relaxation of the crystal-melt coexistence line fluctuation with long wavelengths are coupled with a fast and a slow decay process characterized by two distinct time scales, while just the slow decay processes dominate the crystal-melt coexistence line fluctuation with short wavelengths. By comparing with bulk ice-water interface systems, we find that the high-frequency processes such as Rayleigh waves participate more in the relaxation of the 1D crystal-melt coexistence line fluctuation. We see that the wave vector dependence of the characteristic relaxation time (of the crystal-melt line fluctuation) is consistent with the crystal-melt interface's existing kinetic theory. Nevertheless, the characteristic relaxation time of the 1D crystal-melt coexistence line relaxation is around one order of magnitude lower than that of the 2D bulk ice-water interface system. We calculate the kinetic coefficients of the 1D crystal-melt coexistence line for the two water model systems, compare with the bulk interface systems, and find the kinetic coefficient of the confined ice-water (crystal-melt) coexistence line is much higher than that of the bulk ice-water interface system. The significant increase in the magnitude of the kinetic coefficient of the confined 1D ice-water coexistence line system may be understood by the substantial suppression of the rotational degree of freedom of the confined water molecules. The current achievement of the fundamental insight and simulation results could potentially facilitate the theoretical advancements in designing new devices of ultrafast phase-change (energy storage, sensor) devices based on confined water systems.

参考文献

[1]
Llombart, P.; Noya, E.G.; MacDowell, L.G. Sci. Adv. 2020, 6, eaay9322.
[2]
Benet, J.; Llombart, P.; Sanz, E.; MacDowell, L.G. Phys. Rev. Lett. 2016, 117, 096101.
[3]
Fitzner, M.; Sosso, G.C.; Cox, S.J.; Michaelides, A. PNAS 2019, 116, 2009.
[4]
Karma, A. Phys. Rev. E 1993, 48, 3441.
[5]
Karma, A. Phys. Rev. Lett. 1993, 70, 3439.
[6]
Hoyt, J.J.; Asta, M.; Karma, A. Interface Sci. 2002, 10, 181.
[7]
Hoyt, J.J.; Asta, M.; Karma, A. Phys. Rev. Lett. 2001, 86, 5530.
[8]
Amini, M.; Laird, B.B. Phys. Rev. Lett. 2006, 97, 216102.
[9]
Hoyt, J.; Asta, M.; Karma, A. Mater. Sci. Eng. R Rep. 2003, 41, 121.
[10]
Benet, J.; MacDowell, L.G.; Sanz, E. J. Chem. Phys. 2014, 141, 034701.
[11]
Ambler, M.; Vorselaars, B.; Allen, M.P.; Quigley, D. J. Chem. Phys. 2017, 146, 074701.
[12]
Landau, L.D.; Lifshitz, E.M. Teori?a de la elasticidad, Vol.7, Academia de Ciencias, Reverté, Barcelona, 1969 .
[13]
Sanchez, M.A.; Kling, T.; Ishiyama, T.; van Zadel, M.J.; Bisson, P.J.; Mezger, M.; Jochum, M.N.; Cyran, J.D.; Smit, W.J.; Bakker, H.J.; Shultz, M.J.; Morita, A.; Donadio, D.; Nagata, Y.; Bonn, M.; Backus, E.H. PNAS 2017, 114, 227.
[14]
Murata, K.I.; Nagashima, K.; Sazaki, G. Phys. Rev. Lett. 2019, 122, 026102.
[15]
Algara-Siller, G.; Lehtinen, O.; Wang, F.C.; Nair, R.R.; Kaiser, U.; Wu, H.A.; Geim, A.K.; Grigorieva, I.V. Nature 2015, 519, 443.
[16]
Jeong, H.C.; Williams, E.D. Surf. Sci. Rep. 1999, 34, 171.
[17]
Bartelt, N.C.; Tromp, R.M. Phys. Rev. B 1996, 54, 11731.
[18]
Bartelt, N.C.; Goldberg, J.L.; Einstein, T.L.; Williams, E.D.; Heyraud, J.C.; Métois, J.J. Phys. Rev. B 1993, 48, 15453.
[19]
Zhu, Y.B.; Wang, F.C.; Wu, H.A. J. Chem. Phys. 2017, 147, 044706.
[20]
Granick, S. Science 1991, 253, 1374.
[21]
Fang, H.P. Acta Phys. Sin. 2016, 65, 186101 . (in Chinese)
[21]
方海平, 物理学报, 2016, 65, 186101.
[22]
Sun, Y.R.; Yu, F.; Ma, J. Acta Phys.-Chim. Sin. 2017, 33, 2173 . (in Chinese)
[22]
孙怡然, 于飞, 马杰, 物理化学学报, 2017, 33, 2173.
[23]
Wang, J.; Zhu, Y.; Zhou, J.; Lu, X.H. Acta Chim. Sinica 2003, 61, 1891 . (in Chinese)
[23]
王俊, 朱宇, 周健, 陆小华, 化学学报, 2003, 61, 1891.
[24]
Fang, H.P. Physics 2011, 40, 311 . (in Chinese)
[24]
方海平, 物理, 2011, 40, 311.
[25]
Wang, F.C.; Sun, C.Q.; Wu, H.A. Chin. Sci. Bull. 2017, 62, 1111 . (in Chinese)
[25]
王奉超, 孙长庆, 吴恒安, 科学通报, 2017, 62, 1111.
[26]
Wang, F.C.; Zhu, Y.B.; Wu, H.A. Sci-Phys Mech Astron 2018, 48, 094609 . (in Chinese)
[26]
王奉超, 朱银波, 吴恒安, 中国科学: 物理学力学天文学, 2018, 48, 094609.
[27]
Nan, Y.L.; Kong, X.; Li, J.P.; Lu, D.N. CIESC J. 2017, 68, 1786 . (in Chinese)
[27]
南怡伶, 孔宪, 李继鹏, 卢滇楠, 化工学报, 2017, 68, 1786.
[28]
Fan, Q.; Liang, H.T.; Xu, X.Q.; Lv, S.T.; Liang, Z.; Yang, Y. Acta Chim. Sinica 2020, 78, 547 . (in Chinese)
[28]
范勤, 梁洪涛, 许贤祺, 吕松泰, 梁尊, 杨洋, 化学学报, 2020, 78, 547.
[29]
Fumagalli, L.; Esfandiar, A.; Fabregas, R.; Hu, S.; Ares, P.; Janardanan, A.; Yang, Q.; Radha, B.; Taniguchi, T.; Watanabe, K.; Gomila, G.; Novoselov, K.S.; Geim, A.K. Science 2018, 360, 1339.
[30]
Du, H.; Liang, H.T.; Yang, Y. Acta Chim. Sinica 2018, 76, 483 . (in Chinese)
[30]
杜涵, 梁洪涛, 杨洋, 化学学报, 2018, 76, 483.
[31]
Abascal, J.L.; Sanz, E.; Garcia Fernandez, R.; Vega, C. J. Chem. Phys. 2005, 122, 234511.
[32]
Espinosa, J.R.; Vega, C.; Sanz, E. J. Phys. Chem. C 2016, 120, 8068.
[33]
Lamoureux, G.; Harder, E.; Vorobyov, I.V.; Roux, B.; MacKerell, A.D. Chem. Phys. Lett. 2006, 418, 245.
[34]
Magda, J.J.; Tirrell, M.; Davis, H.T. J. Chem. Phys. 1986, 84, 2901.
[35]
Plimpton, S. J. Comput. Phys. 1995, 117, 1.
[36]
Hockney, R.W.; Eastwood, J.W. Computer simulation using particles, CRC Press, U.S. , 1988, p. 55.
[37]
Yeh, I.C.; Berkowitz, M.L. J. Chem. Phys. 1999, 111, 3155.
[38]
Ryckaert, J.P.; Ciccotti, G.; Berendsen, H.J.C. J. Comput. Phys. 1977, 23, 327.
[39]
Jiang, W.; Hardy, D.J.; Phillips, J.C.; Mackerell, A.D.; Schulten, K.; Roux, B. J. Phys. Chem. Lett. 2011, 2, 87.
[40]
Davidchack, R.L.; Laird, B.B. Phys. Rev. Lett. 2000, 85, 4751.
[41]
Broughton, J.Q.; Gilmer, G.H. J. Chem. Phys. 1986, 84, 5759.
[42]
Broughton, J.Q.; Gilmer, G.H. J. Chem. Phys. 1986, 84, 5749.
[43]
Fisher, M.P.A.; Fisher, D.S.; Weeks, J.D. Phys. Rev. Lett. 1982, 48, 368.
[44]
Wang, F.C.; Wu, H.A.; Geim, A.K. Nature 2015, 528, E3.
[45]
Chacón, E.; Fernández, E.M.; Duque, D.; Delgado-Buscalioni, R.; Tarazona, P. Phys. Rev. B 2009, 80, 195403.
[46]
Delgado-Buscalioni, R.; Chacon, E.; Tarazona, P. Phys. Rev. Lett. 2008, 101, 106102.
[47]
Liang, H.T.; Laird, B.B.; Asta, M.; Yang, Y. Acta Mater. 2018, 143, 329.
[48]
Morris, J.R. Phys. Rev. B 2002, 66, 144104.
[49]
Frolov, T.; Asta, M. J. Chem. Phys. 2012, 137, 214108.
[50]
Mahynski, N.A.; Shen, V.K. J. Chem. Phys. 2017, 146, 044706.
[51]
Chen, J.; Schusteritsch, G.; Pickard, C.J.; Salzmann, C.G.; Michaelides, A. Phys. Rev. Lett. 2016, 116, 025501.
[52]
Freitas, R.; Frolov, T.; Asta, M. Phys. Rev. E 2017, 96, 043308.
[53]
Monk, J.; Yang, Y.; Mendelev, M.I.; Asta, M.; Hoyt, J.J.; Sun, D.Y. Model. Simul. Mater. Sci. Eng. 2010, 18, 015004.
[54]
Amini, M.; Laird, B.B. Phys. Rev. Lett. 2006, 97, 216102.
[55]
Wu, K.A.; Wang, C.H.; Hoyt, J.J.; Karma, A. Phys. Rev. B 2015, 91, 014107.
[56]
Huitema, H.E.A.; Vlot, M.J.; van der Eerden, J.P. J. Chem. Phys. 1999, 111, 4714.
[57]
Gao, Y.F.; Yang, Y.; Sun, D.Y.; Asta, M.; Hoyt, J.J. J. Cryst. Growth 2010, 312, 3238.
[58]
Mendelev, M.I.; Rahman, M.J.; Hoyt, J.J.; Asta, M. Model. Simul. Mater. Sci. Eng. 2010, 18, 074002.
[59]
Murata, K.; Nagashima, K.; Sazaki, G. Phys. Rev. Lett. 2019, 122, 026102.
[60]
Tazi, S.; Botan, A.; Salanne, M.; Marry, V.; Turq, P.; Rotenberg, B. J. Phys. Condens. Matter 2012, 24, 284117.
[61]
Yeh, I.-C.; Hummer, G. J. Phys. Chem. B 2004, 108, 15873.
[62]
Yang, P.L.; Wang, Z.X.; Liang, Z.; Liang, H.T.; Yang, Y. Acta Chim. Sinica 2019, 77, 1045 . (in Chinese)
[62]
杨鹏里, 王振兴, 梁尊, 梁洪涛, 杨洋, 化学学报, 2019, 77, 1045.
[63]
Xu, X.Q.; Laird, B.B.; Hoyt, J.J.; Asta, M.; Yang, Y. Cryst. Growth Des. 2020, 20, 7862.
[64]
Kathmann, S.M.; Kuo, I.W.; Mundy, C.J. J. Am. Chem. Soc. 2008, 130, 16556.
文章导航

/