综述

仿生光子晶体纤维的研究进展

  • 裴广晨 ,
  • 王京霞 ,
  • 江雷
展开
  • a 中国科学院理化技术研究所 仿生材料与界面科学重点实验室 北京 100190
    b 中国科学院大学 材料与光电研究中心 北京 101407
    c 中国科学院大学 未来技术学院 北京 101407

裴广晨, 女, 汉族, 中国科学院理化技术研究所硕士, 主要从事光子晶体的制备, 静电纺丝光子晶体纤维的制备及应用性能研究.

王京霞, 女, 中国科学院理化技术研究所研究员, 博士生导师, 中国科学院大学未来技术学院岗位教授. 多年来聚焦在浸润性对光子晶体制备及应用性能研究. 2004年1月毕业于清华大学高分子研究所, 师从刘德山教授. 2004年2月~2006年8月在中国科学院化学所有机固体实验室江雷研究员课题组做博士后研究, 研究方向为聚合物光子晶体浸润性研究. 2006年8月~2014年4月留在中国科学院化学所新材料实验室宋延林研究员课题组任副研究员, 研究方向为聚合物光子晶体的大面积制备及应用. 2014年至今, 调到中国科学院理化所仿生材料与界面科学重点实验室任研究员, 研究方向为特殊浸润性在光子晶体制备及应用中的作用. 目前在包括Chem. Soc. Rev.,Acc. Chem. Res.,J. Am. Chem. Soc.,Adv. Funct. Mater.等国际期刊发表研究论文100余篇, 相关研究成果申请并授权专利50余项. 参与宋延林研究员主持的项目“纳米材料绿色打印印刷基础研究”, 获得2016年北京市科学技术一等奖(第四排名)(No.2016 基-1-001-04).

收稿日期: 2020-12-07

  网络出版日期: 2021-02-05

基金资助

国家重大研究计划(2016YFA0200803); 国家重大研究计划(2017YFA0204504); 国家重大研究计划(2016YFB0402004); 国家自然科学基金(51673207); 国家自然科学基金(51873221); 国家自然科学基金(52073292); 中科院-荷兰合作项目(1A111KYSB20190072); 北京市科技计划(Z181100004418012)

Research Progress of Bioinspired Photonic Crystal Fibers

  • Guangchen Pei ,
  • Jingxia Wang ,
  • Lei Jiang
Expand
  • a Key Laboratory of Bioinspired Materials and Interfaces Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190
    b Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 101407
    c School of Future Technology, University of Chinese Academy of Sciences, Beijing 101407
* E-mail: ; Tel.: 010-82543510

Received date: 2020-12-07

  Online published: 2021-02-05

Supported by

Ministry of Science and Technology of China(2016YFA0200803); Ministry of Science and Technology of China(2017YFA0204504); Ministry of Science and Technology of China(2016YFB0402004); National Natural Science Foundation of China(51673207); National Natural Science Foundation of China(51873221); National Natural Science Foundation of China(52073292); Chinese Academy of Sciences and Dutch research project(1A111KYSB20190072); Beijing Municipal Science & Technology Commission(Z181100004418012)

摘要

光子晶体纤维是由光子晶体结构组成的纤维, 具有高饱和度的结构色彩; 其结合响应性材料或柔性基质可制备各种传感响应性光子晶体纤维, 在可穿戴智能传感设备方面具有应用潜力. 自然界中存在许多光子晶体纤维结构, 比如雪绒花花瓣的绒毛, 撒哈拉沙漠银蚂蚁的毛发, 黑嘴喜鹊羽毛等, 光子晶体纤维的研究对于取代传统纺织业的化学染料具有重要意义. 本综述总结了光子晶体纤维的概念、仿生制备方法、性能及相关应用, 并对光子晶体纤维在纺织业和智能传感领域的应用前景进行展望, 该综述对于发展光子晶体纤维的制备方法及潜在应用具有重要意义.

本文引用格式

裴广晨 , 王京霞 , 江雷 . 仿生光子晶体纤维的研究进展[J]. 化学学报, 2021 , 79(4) : 414 -429 . DOI: 10.6023/A20120556

Abstract

Photonic crystal (PC) fibers exist in many creatures in nature, which give them bright structural colors. PC fibers refer to fibers with the PC structure, which have a highly saturated structural color. Traditional chemical dyes in the textile industry are difficult to degrade to produce chemical pollution and waste of water resources. PC fibers with structural colors are of great significance for replacing traditional chemical dyes in the textile industry and have great potential in making wearable smart sensing devices. They can be used to prepare various sensor-responsive PC fibers when combined with responsive materials or flexible substrates. This paper reviews the fabrication methods, performance, applications and other related research works of PC fibers. PC fibers are mainly composed of colloidal microspheres. To show the structure and properties of PCs, the colloidal microsphere units are mixed with fiber materials and arranged in an orderly manner, or are directly assembled to fibrous materials. The fabrication methods of PC fibers mainly include template assembly, electrospinning, microfluidic spinning, extrusion assembly, multilayer crimp assembly, iterative size reduction and fabric assembly method. PC fibers have many excellent properties. For example, PC fibers are superhydrophobic after being stacked and arranged, which are similar to feathers of drakes with self-cleaning effect. The inverse opal PC fibers have high porosity, high specific area and periodic structure, which can greatly improve the application performance. PC fibers or fiber stacked fibrous membranes have a bright structural color, which can be used for the fabrication of various responsive PC fibers, such as strain-, humidity-, photothermal-, solvent-, and magnetic-response fiber, which are of great significance to the research and application of wearable smart sensors. Finally, the application prospects of PC fibers in the textile industry and intelligent sensing field are discussed.

参考文献

[1]
Kertész, K.; Bálint, Z.; Vértesy, Z.; Márk, G.I.; Lousse, V.; Vigneron, J.P.; Biró, L.P. Curr. Appl. Phys. 2006, 6,252.
[2]
Shi, N.N.; Tsai, C.C.; Camino, F.; Bernard, G.D.; Yu, N.F.; Wehner, R. Science 2015, 349,298.
[3]
Kolle, M.; Lethbridge, A.; Kreysing, M.; Baumberg, J.J.; Aizenberg, J.; Vukusic, P. Adv. Mater. 2013, 25,2239.
[4]
Gao, B.B.; He, Z.Z.; He, B.F.; Gu, Z.Z. Sens. Actuator B Chem. 2019, 288,734.
[5]
Yoshioka, S.; Kinoshita, S. Forma 2002, 17,169.
[6]
Zi, J.; Yu, X.D.; Li, Y.Z.; Hu, X.H.; Xu, C.; Wang, X.J.; Liu, X.H.; Fu, R.T. Proc. Natl. Acad. Sci. U. S. A. 2003, 100,12576.
[7]
Burg, S.L.; Parnell, A.J. J. Phys. Condes. Matter 2018, 30,413001.
[8]
Khudiyev, T.; Dogan, T.; Bayindir, M. Sci. Rep. 2014, 4,4718.
[9]
Han, C.; Kim, H.; Jung, H.; Lee, S.I.; Jablonski, P.G.; Jeon, H. Optica 2017, 4,464.
[10]
Moon, J.H.; Kim, S.; Yi, G.R.; Lee, Y.H.; Yang, S.M. Langmuir 2004, 20,2033.
[11]
Ni, H.B.; Wang, M.; Chen, W. Opt. Express 2011, 19,25900.
[12]
Zhao, Z.; Wang, H.; Shang, L.R.; Yu, Y.R.; Fu, F.F.; Zhao, Y.J.; Gu, Z.Z. Adv. Mater. 2017, 29,1704569.
[13]
Kim, S.H.; Hwang, H.; Yang, S.M. Angew. Chem. Int. Ed. 2012, 51,3601.
[14]
Liu, Z.; Zhang, Q.; Wang, H.; Li, Y. Chem. Commun. 2011, 47,12801.
[15]
Moon, J.H.; Yi, G.R.; Yang, S.M. J. Colloid Interf. Sci. 2005, 287,173.
[16]
Yuan, W.; Li, Q.; Zhou, N.; Zhang, S.; Ding, C.; Shi, L.; Zhang, K.Q. ACS Appl. Mater. Interfaces 2019, 11,19388.
[17]
Zhang, J.; He, S.S.; Liu, L.M.; Guan, G.Z.; Lu, X.; Sun, X.M.; Peng, H.S. J. Mater. Chem. C 2016, 4,2127.
[18]
Zhou, N.; Zhang, A.; Shi, L.; Zhang, K.Q. ACS Macro Lett. 2013, 2,116.
[19]
Meng, J.Y.; Li, X.; Gong, Y.; Wang, R.; Zheng, Y.P.; Zhang, D.Q. Acta Polym. Sin. 2018, (3),389. (in Chinese)
[19]
( 孟佳意, 李昕, 龚龑, 王锐, 郑一平, 张德权, 高分子学报, 2018, (3),389.)
[20]
Lai, C.H.; Yang, Y.L.; Chen, L.Y.; Huang, Y.J.; Chen, J.Y.; Wu, P.W.; Cheng, Y.T.; Huang, Y.T. J. Electrochem. Soc. 2011, 158,37.
[21]
Yuan, X.F.; Liu, Z.F.; Shang, S.L.; Wang, H.Z.; Zhang, Q.H.; Li, Y.G.; Jin, W.S. RSC Adv. 2016, 6,16319.
[22]
Liu, Z.F.; Zhang, Q.H.; Wang, H.Z.; Li, Y.G. Nanoscale 2013, 5,6917.
[23]
Sun, X.; Zhang, J.; Lu, X.; Fang, X.; Peng, H.S. Angew. Chem. Int. Ed. 2015, 54,3630.
[24]
Li, K.; Zhang, Q.; Wang, H.; Li, Y. ACS Appl. Mater. Interfaces 2014, 6,13043.
[25]
Liu, Z.F.; Zhang, Q.H.; Wang, H.Z.; Li, Y.G. J. Colloid Interf. Sci. 2013, 406,18.
[26]
Shang, S.L.; Liu, Z.F.; Zhang, Q.H.; Wang, H.Z.; Li, Y.G. J. Mater. Chem. A 2015, 3,11093.
[27]
Shang, S.L.; Zhang, Q.H.; Wang, H.Z.; Li, Y.G. J. Colloid Interf. Sci. 2016, 483,11.
[28]
Zhang, K.Q.; Yuan, W.; Zhou, N.; Wu, C.J., Electrospun Nanofibers for Energy and Environmental Applications, Eds.: Ding, B.; Yu, J., Springer-Verlag Berlin Heidelberg, 2014, p. 403.
[29]
Wu, C.; Yuan, W.; Al-Deyab, S.S.; Zhang, K.Q. Appl. Surf. Sci. 2014, 313,389.
[30]
Lim, J.M.; Moon, J.H.; Yi, G.R.; Heo, C.J.; Yang, S.M. Langmuir 2006, 22,3445.
[31]
Lim, J.M.; Yi, G.R.; Moon, J.H.; Heo, C.J.; Yang, S.M. Langmuir 2007, 23,7981.
[32]
Yuan, W.; Zhang, K.Q. Langmuir 2012, 28,15418.
[33]
Yuan, W.; Zhou, N.; Shi, L.; Zhang, K.Q. ACS Appl. Mater. Interfaces 2015, 7,14064.
[34]
Yuan, S.J.; Meng, W.H.; Du, A.H.; Cao, X.Y.; Zhao, Y.; Wang, J.X.; Jiang, L. Chinese J. Polym. Sci. 2019, 37,729.
[35]
Kim, G.H.; An, T.; Lim, G. Nanoscale Res. Lett. 2018, 13,204.
[36]
Li, G.X.; Shen, H.X.; Li, Q.; Tian, Y.; Wang, C.F.; Chen, S. Mater. Lett. 2019, 242,179.
[37]
Zhang, Y.; Tian, Y.; Xu, L.L.; Wang, C.F.; Chen, S. Chem. Commun. 2015, 51,17525.
[38]
Finlayson, C.E.; Goddard, C.; Papachristodoulou, E.; Snoswell, D.R. E.; Kontogeorgos, A.; Spahn, P.; Hellmann, G.P.; Hess, O.; Baumberg, J.J. Opt. Express 2011, 19,3144.
[39]
Tan, A.T. L.; Beroz, J.; Kolle, M.; Hart, A.J. Adv. Mater. 2018, 30,e1803620.
[40]
Kohri, M.; Yanagimoto, K.; Kawamura, A.; Hamada, K.; Imai, Y.; Watanabe, T.; Ono, T.; Taniguchi, T.; Kishikawa, K. ACS Appl. Mater. Interfaces 2018, 10,7640.
[41]
Meng, X.; Pan, H.; Lu, T.; Chen, Z.X.; Chen, Y.R.; Zhang, D.; Zhu, S.M. Nanotechnology 2018, 29,325604.
[42]
Zeng, Q.; Ding, C.; Li, Q.S.; Yuan, W.; Peng, Y.; Hu, J.C.; Zhang, K.Q. RSC Adv. 2017, 7,8443.
[43]
Li, Q.S.; Zhang, Y.F; Shi, L.; Qiu, H.H.; Zhang, S.M.; Qi, N.; Hu, J.C.; Yuan, W.; Zhang, X.H.; Zhang, K.Q. ACS Nano 2018, 12,3095.
[44]
Liu, G.J.; Zhou, L.; Zhang, G.Q.; Li, Y.C.; Chai, L.Q.; Fan, Q.G.; Shao, J.Z. Mater. Design 2017, 114,10.
[45]
Wang, X.H.; Li, Y.C.; Zhou, L.; Chai, L.Q.; Fan, Q.G.; Shao, J.Z. Dyes. Pigments 2019, 169,36.
[46]
Shi, X.; He, J.; Wu, L.; Chen, S.; Lu, X. J. Coat. Technol. Res. 2020, 17,1033.
[47]
Liu, G.; Han, P.; Chai, L.; Li, Z.; Zhou, L. Colloid Surf. A-Physicochem. Eng. Asp. 2020, 600,124991.
[48]
Liu, G.; Han, P.; Wu, Y.; Li, H.; Zhou, L. Opt. Mater. 2019, 98,109503.
[49]
Liu, G.; Guo, Y.; Zhou, L.; Wu, Y.; Chen, M.; He, Z. J. Mater. Sci. 2019, 54,10929.
[50]
Shi, X.; He, J.; Xie, X.; Dou, R.; Lu, X. Dyes. Pigments 2019, 165,137.
[51]
Zhao, Y.; Xie, Z.; Gu, H.; Zhu, C.; Gu, Z. Chem. Soc. Rev. 2012, 41,3297.
[52]
Shang, L.; Zhang, W.; Xu, K.; Zhao, Y. Mater. Horizons 2019, 6,945.
[53]
Gao, W.; Rigout, M.; Owens, H. J. Nanopart. Res. 2017, 19,303.
[54]
Wang, H.; Zhang, K.Q. Sensors 2013, 13,4192.
[55]
Wang, Z.; Guo, Z. J. Bionic Eng. 2018, 15,1.
[56]
Zhao, C.; Ma, Y.; Wang, Y.; Zhou, X.; Li, H.; Li, M.; Song, Y. Acta Chim. Sinica 2018, 76,9. (in Chinese)
[56]
( 赵聪, 马颖, 汪洋, 周雪, 李会增, 李明珠, 宋延林, 化学学报, 2018, 76,9.)
[57]
Liu, X.; Qin, L.; Zhan, Y.; Chen, M.; Yu, Y. Acta Chim. Sinica 2020, 78,478. (in Chinese)
[57]
( 刘晓珺, 秦朗, 詹媛媛, 陈萌, 俞燕蕾, 化学学报, 2020, 78,478.)
[58]
Wu, P.; Wang, J.; Jiang, L. Mater. Horizons 2020, 7,338.
[59]
Wan, L.; Zhang, M.; Wang, J.; Jiang, L. Acta Chim. Sinica 2016, 74,639. (in Chinese)
[59]
( 万伦, 张漫波, 王京霞, 江雷, 化学学报, 2016, 74,639.)
[60]
Cui, L.; Fan, S.; Yu, C.; Kuang, M.; Wang, J. Acta Chim. Sinica 2017, 75,967. (in Chinese)
[60]
( 崔丽影, 范莎莎, 于存龙, 邝旻旻, 王京霞, 化学学报, 2017, 75,967.)
[61]
Wu, P.; Liu, J.; Xie, Z.; Guo, J.; Wang, J. Chinese J. Polym. Sci. 2018, 36,555.
[62]
Liu, J.; Shang, Y.; Zhang, D.; Xie, Z.; Hu, R.; Wang, J. Chinese J. Polym. Sci. 2017, 35,1043.
文章导航

/