综述

钠硒电池关键材料的研究进展

  • 林碧霞 ,
  • 黄颖珊 ,
  • 陈帅 ,
  • 邢震宇
展开
  • a 华南师范大学化学学院 广州 510006
    b 环境理论化学教育部重点实验室 广州 510006

林碧霞, 2011年于华南师范大学取得硕士学位, 目前主要研究方向集中于纳米材料的制备及其在光电领域的应用.

邢震宇, 2012年吉林大学取得化学学士学位, 2016年美国Oregon State University取得化学博士学位, 之后在加拿大University of Waterloo从事博士后研究, 自2018年被引进华南师范大学工作. 主要研究方向集中于基于金属热反应的材料制备及其在能源存储领域的应用, 尤其在碳材料和硫化锂材料的制备方面取得了系统性的研究进展.

收稿日期: 2020-12-20

  网络出版日期: 2021-02-22

基金资助

项目受国家自然科学基金青年基金(22002045); 广东省基础与应用基础研究基金自然科学基金项目(面上项目)(2020A1515011549); 广东省普通高校青年创新人才项目(2018KQNCX059)

Research Progress of Key Materials for Sodium-selenium Batteries

  • Bixia Lin ,
  • Yingshan Huang ,
  • Shuai Chen ,
  • Zhenyu Xing
Expand
  • a School of Chemistry, South China Normal University, Guangzhou 510006, China
    b Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China

Received date: 2020-12-20

  Online published: 2021-02-22

Supported by

National Natural Science Foundation of China(22002045); Guangdong Basic and Applied Basic Research Foundation(2020A1515011549); Education Department of Guangdong Province(2018KQNCX059)

摘要

钠硒电池中硒正极导电率高(1×10–3 S/m), 体积比容量高(3253 mAh/cm3), 而钠负极原材料资源丰富, 成本低廉, 在基站式储能方面具有一定优势. 但是, 循环过程中硒正极的穿梭效应及体积变化等问题极大限制了钠硒电池的发展. 本综述总结了钠硒电池的基本原理和现存难题, 并详细介绍了其研究进展, 最后展望了钠硒电池的未来发展方向, 以期为钠硒电池的进一步研究提供新的思路.

本文引用格式

林碧霞 , 黄颖珊 , 陈帅 , 邢震宇 . 钠硒电池关键材料的研究进展[J]. 化学学报, 2021 , 79(5) : 641 -648 . DOI: 10.6023/A20120576

Abstract

Sodium-selenium batteries show some advantages in stationary energy storage, benefitting from selenium cathode of high conductivity (1×10–3 S/m), high volume-specific capacity (3253 mAh/cm3), as well as sodium anode of abundant resources and low cost. However, the serious shuttle effect and volume change of selenium cathode greatly limit the further development. Herein, basic mechanism and current problems of sodium-selenium batteries are summarized, and the current research progress are discussed in detail. In end, future development of sodium-selenium is proposed, in order to provide some new perspectives.

参考文献

[1]
Khalil, H. B.; Zaidi, S. J. H. Renew. Sust. Energ. Rev. 2014, 31,194.
[2]
Vlachos, D. G.; Caratzoulas, S. Chem. Eng. Sci. 2010, 65,18.
[3]
Chu, S.; Cui, Y.; Liu, N. Nat. Mater. 2017, 16,16.
[4]
Jacobson, M. Z. Energ. Environ. Sci. 2008, 650,723.
[5]
Bisio, G.; Rubatto, G.; Martini, R. Energy 2000, 25,1047.
[6]
Chen, H. S.; Cong, T. N.; Yang, W.; Tan, C. Q.; Li, Y. L.; Ding, Y. L. Prog. Nat. Sci. 2009, 19,291.
[7]
Ibrahim, H.; Ilinca, A.; Perron, J. Renew. Sust. Energ. Rev. 2008, 12,1221.
[8]
Divya, K. C.; Stergaard, J. Electr. Pow. Syst. Res. 2009, 79,511.
[9]
Xing, Z. Y.; Wang, S.; Yu, A. P.; Chen, W. Z. Nano Energy 2018, 50,229.
[10]
Su, D.; Zou, L.; Han, D. D.; Lv, X. L.; Zou, X. Electr. Meas. Instrum. 2017, 54,83.
[10]
( 苏荻, 邹黎, 韩冬冬, 吕晓丽, 邹雪, 电测与仪表, 2017, 54,83.)
[11]
Wang, H.; Jiang, Y.; Manthiram, A. Energy Storage Mater. 2018, 18,2405.
[12]
Poborchii, V. V.; Kolobov, A. V. Chem. Phys. Lett. 1997, 280,17.
[13]
Li, Q. Q.; Liu, H. G.; Yao, Z. P.; Cheng, J. P.; Li, T. H.; Li, Y.; Wolverton, C.; Wu, J. S.; Dravid, V. P. ACS Nano 2016, 10(9),8788.
[14]
Xu, Q. J.; Yang, T. T.; Gao, W.; Zhan, R. M.; Zhang, Y. Q.; Bao, S. J.; Li, X. Y.; Chen, Y. M.; Xu, M. W. J. Power Sources 2019, 443,227245.
[15]
Deng, Y. R.; Gong, L. L.; Pan, Y. L.; Cheng, X. D.; Zhang, H. P. Nanoscale 2019, 11,11671.
[16]
Luo, W.; Lin, C. F.; Zhao, O.; Noked, M.; Zhang, Y.; Rubloff, G. W.; Hu, L. B. Adv. Energy Materials. 2017, 7,1601526.
[17]
Zeng, L. C.; Zeng, W. C.; Jiang, Y.; Wei, X.; Li, W. H.; Yang, C. L.; Zhu, Y. W.; Yu, Y. Advanced Energy Mater. 2015, 5,1401377.
[18]
Xing, Z. Y.; Tan, G. Q.; Yuan, Y. F.; Wang, B.; Ma, L.; Xie, J.; Li, Z. S.; Wu, T. P.; Ren, Y.; Shahbazian-Yassar, R.; Lu, J.; Ji, X. L.; Chen, Z. W. Adv. Mater. 2020, 32,2002403.
[19]
Xing, Z. Y.; Li, G. R.; Serubbabel, S.; Chen, Z. W. Nano Energy 2018, 54,1.
[20]
Zeng, L. C.; Li, W. H.; Jiang, Y.; Yu, Y. Rare Metals 2017, 36,339.
[21]
Xing, Z. Y.; Deng, Y. P.; Serubbabel, S.; Tan, G. Q.; Li, A. J.; Li, J. D.; Niu, Y.; Li, N.; Su, D.; Lu, J.; Chen, Z. W. Nano Energy 2019, 65,104051.
[22]
Xing, Z. Y.; Wang, B.; Halsted, J. K.; Subashchandrabose, R.; Stickleb, W. F.; Ji, X. L. Chem. Commun. 2015, 51,1969.
[23]
Xing, Z. Y.; Gao, N. S. J.; Qi, Y. T.; Ji, X. L.; Liu, H. Carbon 2017, 115,271.
[24]
Xing, Z. Y.; Qi, Y. T.; Tian, Z. Q.; Xu, J.; Yuan, Y. F.; Bommier, C.; Lu, J.; Tong, W.; Jiang, D,; Ji, X. L. Chem. Mater. 2017, 29,7288.
[25]
Xing, Z. Y.; Luo, X. Y.; Qi, Y. T.; Stickle, W. F.; Amine, K.; Lu, J.; Ji, X. L. ChemNanoMat 2016, 2,692.
[26]
Yuan, B. B.; Sun, X. Z.; Zeng, L. C.; Yu, Y.; Wang, Q. S. Small 2018, 14,1703252.
[27]
Yang, X. M.; Wang, H. K.; Yu, D. Y. W.; Rogach, A. L. Adv. Funct. Mater. 2018, 28,1706609.
[28]
Ding, J.; Zhou, H.; Zhang, H. L.; Stephenson, T.; Li, Z.; Karpuzov, D.; Mitlin, D. Energ. Environ. Sci. 2017, 10,153.
[29]
Guo, B. R.; Mi, H. W.; Zhang, P. X.; Ren, X. Z.; Li, Y. L. Nanoscale Res. Lett. 2019, 14,30.
[30]
Yang, X. M.; Wang, J. K.; Wang, S.; Wang, H. K.; Tomanec, O.; Zhi, C. Y.; Zboril, R.; Wu, Y. W.; Rogach, A. ACS Nano 2018, 12,7397.
[31]
Wang, H.; Jiang, Y.; Manthiram, A. Adv. Energy Mater. 2018, 8,1.
[32]
Ding, J.; Zhou, H.; Zhang, H. L.; Tong, L. Y.; Mitlin, D. Adv. Energy Mater. 2017, 1701918,1.
[33]
Zhang, F.; Xiong, P.; Guo, X.; Zhang, J. Q.; Yang, W.; Wu, W. J.; Liu, H.; Wang, G. X. Energy Storage Mater. 2019, 19,251.
[34]
Xu, Q. J.; Liu, T.; Hu, L. Y.; Dai, C. L.; Zhang, Y. Q.; Li, Y.; Liu, D. Y.; Xu, M. W. ACS Appl. Mater. Inter. 2017, 9,41339.
[35]
Xu, Q. J.; Liu, H.; Du, W. Y.; Zhan, L. Y.; Hu, L. Y.; Bao, S. J.; Dai, C. L.; Liu, F.; Xu, M. W. Electrochim. Acta 2018, 276,21.
[36]
Li, S. Q.; Yang, H.; Xu, R.; Gong, Y.; Gu, L.; Yu, Y. Mater. Chem. Front. 2018, 2,1574.
[37]
Dong, W.; Chen, H.; Xia, H.; Yu, W.; Song, J.; Wu, S.; Deng, Z.; Hu, Z. Y.; Hasan, T.; Li, Y.; Wang, H.; Chen, L.; Su, B. L. J. Mater. Chem. A 2018, 6,22790.
[38]
Zhao, X. S.; Yin, L. C.; Zhang, T.; Zhang, M. Nano Energy 2018, 49,137.
[39]
Zeng, L. C.; Wei, X.; Wang, J. Q.; Jiang, Y. J. Power Sources 2015, 281,461.
文章导航

/