收稿日期: 2020-12-20
网络出版日期: 2021-02-22
基金资助
项目受国家自然科学基金青年基金(22002045); 广东省基础与应用基础研究基金自然科学基金项目(面上项目)(2020A1515011549); 广东省普通高校青年创新人才项目(2018KQNCX059)
Research Progress of Key Materials for Sodium-selenium Batteries
Received date: 2020-12-20
Online published: 2021-02-22
Supported by
National Natural Science Foundation of China(22002045); Guangdong Basic and Applied Basic Research Foundation(2020A1515011549); Education Department of Guangdong Province(2018KQNCX059)
林碧霞 , 黄颖珊 , 陈帅 , 邢震宇 . 钠硒电池关键材料的研究进展[J]. 化学学报, 2021 , 79(5) : 641 -648 . DOI: 10.6023/A20120576
Sodium-selenium batteries show some advantages in stationary energy storage, benefitting from selenium cathode of high conductivity (1×10–3 S/m), high volume-specific capacity (3253 mAh/cm3), as well as sodium anode of abundant resources and low cost. However, the serious shuttle effect and volume change of selenium cathode greatly limit the further development. Herein, basic mechanism and current problems of sodium-selenium batteries are summarized, and the current research progress are discussed in detail. In end, future development of sodium-selenium is proposed, in order to provide some new perspectives.
[1] | Khalil, H. B.; Zaidi, S. J. H. Renew. Sust. Energ. Rev. 2014, 31,194. |
[2] | Vlachos, D. G.; Caratzoulas, S. Chem. Eng. Sci. 2010, 65,18. |
[3] | Chu, S.; Cui, Y.; Liu, N. Nat. Mater. 2017, 16,16. |
[4] | Jacobson, M. Z. Energ. Environ. Sci. 2008, 650,723. |
[5] | Bisio, G.; Rubatto, G.; Martini, R. Energy 2000, 25,1047. |
[6] | Chen, H. S.; Cong, T. N.; Yang, W.; Tan, C. Q.; Li, Y. L.; Ding, Y. L. Prog. Nat. Sci. 2009, 19,291. |
[7] | Ibrahim, H.; Ilinca, A.; Perron, J. Renew. Sust. Energ. Rev. 2008, 12,1221. |
[8] | Divya, K. C.; Stergaard, J. Electr. Pow. Syst. Res. 2009, 79,511. |
[9] | Xing, Z. Y.; Wang, S.; Yu, A. P.; Chen, W. Z. Nano Energy 2018, 50,229. |
[10] | Su, D.; Zou, L.; Han, D. D.; Lv, X. L.; Zou, X. Electr. Meas. Instrum. 2017, 54,83. |
[10] | ( 苏荻, 邹黎, 韩冬冬, 吕晓丽, 邹雪, 电测与仪表, 2017, 54,83.) |
[11] | Wang, H.; Jiang, Y.; Manthiram, A. Energy Storage Mater. 2018, 18,2405. |
[12] | Poborchii, V. V.; Kolobov, A. V. Chem. Phys. Lett. 1997, 280,17. |
[13] | Li, Q. Q.; Liu, H. G.; Yao, Z. P.; Cheng, J. P.; Li, T. H.; Li, Y.; Wolverton, C.; Wu, J. S.; Dravid, V. P. ACS Nano 2016, 10(9),8788. |
[14] | Xu, Q. J.; Yang, T. T.; Gao, W.; Zhan, R. M.; Zhang, Y. Q.; Bao, S. J.; Li, X. Y.; Chen, Y. M.; Xu, M. W. J. Power Sources 2019, 443,227245. |
[15] | Deng, Y. R.; Gong, L. L.; Pan, Y. L.; Cheng, X. D.; Zhang, H. P. Nanoscale 2019, 11,11671. |
[16] | Luo, W.; Lin, C. F.; Zhao, O.; Noked, M.; Zhang, Y.; Rubloff, G. W.; Hu, L. B. Adv. Energy Materials. 2017, 7,1601526. |
[17] | Zeng, L. C.; Zeng, W. C.; Jiang, Y.; Wei, X.; Li, W. H.; Yang, C. L.; Zhu, Y. W.; Yu, Y. Advanced Energy Mater. 2015, 5,1401377. |
[18] | Xing, Z. Y.; Tan, G. Q.; Yuan, Y. F.; Wang, B.; Ma, L.; Xie, J.; Li, Z. S.; Wu, T. P.; Ren, Y.; Shahbazian-Yassar, R.; Lu, J.; Ji, X. L.; Chen, Z. W. Adv. Mater. 2020, 32,2002403. |
[19] | Xing, Z. Y.; Li, G. R.; Serubbabel, S.; Chen, Z. W. Nano Energy 2018, 54,1. |
[20] | Zeng, L. C.; Li, W. H.; Jiang, Y.; Yu, Y. Rare Metals 2017, 36,339. |
[21] | Xing, Z. Y.; Deng, Y. P.; Serubbabel, S.; Tan, G. Q.; Li, A. J.; Li, J. D.; Niu, Y.; Li, N.; Su, D.; Lu, J.; Chen, Z. W. Nano Energy 2019, 65,104051. |
[22] | Xing, Z. Y.; Wang, B.; Halsted, J. K.; Subashchandrabose, R.; Stickleb, W. F.; Ji, X. L. Chem. Commun. 2015, 51,1969. |
[23] | Xing, Z. Y.; Gao, N. S. J.; Qi, Y. T.; Ji, X. L.; Liu, H. Carbon 2017, 115,271. |
[24] | Xing, Z. Y.; Qi, Y. T.; Tian, Z. Q.; Xu, J.; Yuan, Y. F.; Bommier, C.; Lu, J.; Tong, W.; Jiang, D,; Ji, X. L. Chem. Mater. 2017, 29,7288. |
[25] | Xing, Z. Y.; Luo, X. Y.; Qi, Y. T.; Stickle, W. F.; Amine, K.; Lu, J.; Ji, X. L. ChemNanoMat 2016, 2,692. |
[26] | Yuan, B. B.; Sun, X. Z.; Zeng, L. C.; Yu, Y.; Wang, Q. S. Small 2018, 14,1703252. |
[27] | Yang, X. M.; Wang, H. K.; Yu, D. Y. W.; Rogach, A. L. Adv. Funct. Mater. 2018, 28,1706609. |
[28] | Ding, J.; Zhou, H.; Zhang, H. L.; Stephenson, T.; Li, Z.; Karpuzov, D.; Mitlin, D. Energ. Environ. Sci. 2017, 10,153. |
[29] | Guo, B. R.; Mi, H. W.; Zhang, P. X.; Ren, X. Z.; Li, Y. L. Nanoscale Res. Lett. 2019, 14,30. |
[30] | Yang, X. M.; Wang, J. K.; Wang, S.; Wang, H. K.; Tomanec, O.; Zhi, C. Y.; Zboril, R.; Wu, Y. W.; Rogach, A. ACS Nano 2018, 12,7397. |
[31] | Wang, H.; Jiang, Y.; Manthiram, A. Adv. Energy Mater. 2018, 8,1. |
[32] | Ding, J.; Zhou, H.; Zhang, H. L.; Tong, L. Y.; Mitlin, D. Adv. Energy Mater. 2017, 1701918,1. |
[33] | Zhang, F.; Xiong, P.; Guo, X.; Zhang, J. Q.; Yang, W.; Wu, W. J.; Liu, H.; Wang, G. X. Energy Storage Mater. 2019, 19,251. |
[34] | Xu, Q. J.; Liu, T.; Hu, L. Y.; Dai, C. L.; Zhang, Y. Q.; Li, Y.; Liu, D. Y.; Xu, M. W. ACS Appl. Mater. Inter. 2017, 9,41339. |
[35] | Xu, Q. J.; Liu, H.; Du, W. Y.; Zhan, L. Y.; Hu, L. Y.; Bao, S. J.; Dai, C. L.; Liu, F.; Xu, M. W. Electrochim. Acta 2018, 276,21. |
[36] | Li, S. Q.; Yang, H.; Xu, R.; Gong, Y.; Gu, L.; Yu, Y. Mater. Chem. Front. 2018, 2,1574. |
[37] | Dong, W.; Chen, H.; Xia, H.; Yu, W.; Song, J.; Wu, S.; Deng, Z.; Hu, Z. Y.; Hasan, T.; Li, Y.; Wang, H.; Chen, L.; Su, B. L. J. Mater. Chem. A 2018, 6,22790. |
[38] | Zhao, X. S.; Yin, L. C.; Zhang, T.; Zhang, M. Nano Energy 2018, 49,137. |
[39] | Zeng, L. C.; Wei, X.; Wang, J. Q.; Jiang, Y. J. Power Sources 2015, 281,461. |
/
〈 |
|
〉 |