收稿日期: 2021-01-28
网络出版日期: 2021-03-19
基金资助
项目受天津大学启动基金资助
Significant Influence of Molecular Packing in Aggregates on Optoelectronic Properties
Received date: 2021-01-28
Online published: 2021-03-19
Supported by
Starting Foundation of Tianjin University
有机小分子材料是由许多分子构成的聚集体, 其性能既与单个分子的空间构型和电子特性有关, 更与聚集体中分子的排列方式和分子间相互作用密切相关. 在有机小分子材料中, 聚集体的性质并不是组成它的单分子行为的简单线性叠加, 而是经常呈现出聚集态的整体差异性响应特点, 即: 不同的聚集态分子排列引起截然不同的性能. 因此, 科学研究已逐渐由单分子研究迈向分子聚集态科学. 随着人们对分子聚集态科学的关注, 特别是对有机分子固态下的排列和堆积方式、分子间相互作用等方面的深入研究发现, 通过不同策略对分子聚集态行为的有效调控, 可以实现完全不同于单个分子特性的聚集态发光现象, 包括发光强度、颜色、形式以及激发过程的差异. 也可以通过分子聚集态的形貌和维度的调节, 实现不同光电器件性能的调节和优化. 本综述将分别介绍聚集态分子的排列方式对力致变色、室温磷光、力致发光和有机场效应晶体管等方面的重要影响, 进一步阐述聚集态分子行为的重要性, 同时, 为有效调控聚集态分子的排列方式, 有针对性地设计和开发优异性能的光电材料提供基础.
王金凤 , 李振 . 聚集态分子排列对光电性能的影响[J]. 化学学报, 2021 , 79(5) : 575 -587 . DOI: 10.6023/A21010029
Organic materials based on small molecules are aggregates that composed of many molecules. Their properties are not only determined by the spatial configuration and electronic properties of individual molecule, but also closely related to the molecular packing modes and the intermolecular interactions in the aggregates. In the realm of organic molecules, the macroscopic performance of molecular aggregates is not just the simple superposition of single molecules, but often display overall differential response of aggregates, namely, distinct properties can be created by molecular uniting with particular packing modes. Therefore, molecular aggregation science has gradually appeared in scientific research and drawn much attention in recent years. With the continuous and serious exploration of molecular aggregation science, especially the in-depth study of the molecular packing modes and intermolecular interactions of organic molecules in the solid state, it is found that the luminescence based on aggregation state is completely different from the characteristics of individual molecule, including the emission intensity and color, emission type, and even the excitation process, which could be realized by regulating molecular aggregation behavior. In addition, the morphology and dimensions of the aggregates can also be adjusted to achieve excellent performances of optoelectronic devices. This review will introduce the important influence of the arrangement of aggregated molecules on mechanochromism, room temperature phosphorescence, mechanoluminescence and organic field effect transistors, and further elaborate the importance of the molecular packing, providing some guidance for regulating molecular packing mode and targeted design and development of high-performance optoelectronic materials.
[1] | Mei, J.; Leung, N. L.C.; Kwok, R. T.K.; Lam, J. W.Y.; Tang, B. Z. Chem. Rev. 2015, 115,11718. |
[2] | Zhi, J.; Zhou, Q.; Shi, H.; An, Z.; Huang, W. Chem. Asian J. 2020, 15,947. |
[3] | Shi, H.; Zou, L.; Huang, K.; Wang, H.; Sun, C.; Wang, S.; Ma, H.; He, Y.; Wang, J.; Yu, H.; Yao, W.; An, Z.; Zhao, Q.; Huang, W. ACS Appl. Mater. Interfaces 2019, 11,18103. |
[4] | Song, Y.; Xu, L.; Wu, Q.; Xiao, S.; Zeng, H.; Gong, Y.; Li, C.; Cheng, S.; Li, Q.; Zhang, L.; Li, Z. Small Methods 2020,1900779. |
[5] | Zhang, H.; Huang, L.; Li, T.; Liu, B.; Bai, Z.; Li, X.; Lu, D. Acta Chim. Sinica 2019, 77,397. (in Chinese). |
[5] | ( 张昊, 黄龙, 李涛, 刘宾, 白泽明, 李小娜, 陆丹, 化学学报, 2019, 77,397.) |
[6] | Jiang, Q.; Wang, Z.; Li, M.; Yang, Y.; Xu, X.; Xu, H.; Wang, S. Chin. J. Org. Chem. 2020, 40,4290. (in Chinese). |
[6] | ( 姜倩, 王忠龙, 李明新, 杨益琴, 徐徐, 徐海军, 王石发, 有机化学, 2020, 40,4290.) |
[7] | Yuan, W. Z.; Gong, Y.; Chen, S.; Shen, X. Y.; Lam, J. W.Y.; Lu, P.; Lu, Y.; Wang, Z.; Hu, R.; Xie, N.; Kwok, H. S.; Zhang, Y.; Sun, J. Z.; Tang, B. Z. Chem. Mater. 2012, 24,1518. |
[8] | Yang, J.; Huang, J.; Li, Q.; Li, Z. J. Mater. Chem. C 2016, 4,2663. |
[9] | Han, M.; Chen, Y.; Xie, Y.; Zhang, F.; Li, X.; Huang, A.; Fan, Y.; Fan, Y.; Gong, Y.; Peng, Q.; Li, Q.; Ma, D.; Li, Z. Cell Rep. Phys. Sci. 2020, 1,100252. |
[10] | Miao, Q.; Xie, C.; Zhen, X.; Lyu, Y.; Duan, H.; Liu, X.; Jokerst, J. V.; Pu, K. Nat. Biotechnol. 2017, 35,1102. |
[11] | He, Z.; Gao, H.; Zhang, S.; Zheng, S.; Wang, Y.; Zhao, Z.; Ding, D.; Yang, B.; Zhang, Y.; Yuan, W. Z. Adv. Mater. 2019, 31,1807222. |
[12] | Li, Q.; Li, Z. Acc. Chem. Res. 2020, 53,962. |
[13] | Li, Q.; Li, Z. Sci. China. Mater. 2020, 63,177. |
[14] | Li, Q.; Li, Z. Adv. Sci. 2017, 4,1600484. |
[15] | Yang, J.; Fang, M.; Li, Z. Aggregate 2020, 1,6. |
[16] | Yang, J.; Chi, Z.; Zhu, W.; Tang, B. Z.; Li, Z. Sci. China Chem. 2019, 62,1090. |
[17] | Liu, F.; Liao, Q.; Wang, J.; Gong, Y.; Dang, Q.; Ling, W.; Han, M.; Li, Q.; Li, Z. Sci. China Chem. 2020, 63,1435. |
[18] | Dong, Y. Q.; Lam, J. W.Y.; Tang, B. Z. J. Phys. Chem. Lett. 2015, 6,3429. |
[19] | Wang, C.; Li, Z. Mater. Chem. Front. 2017, 1,2174. |
[20] | Yao, X.; Chi, Z. Sci. China. Chem. 2013, 43,1090. |
[21] | Yang, Z.; Chi, Z.; Mao, Z.; Zhang, Y.; Liu, S.; Zhao, J.; Aldred, M. P.; Chi, Z. Mater. Chem. Front. 2018, 2,861. |
[22] | Ma, Z.; Wang, Z.; Meng, X.; Ma, Z.; Xu, Z.; Ma, Y.; Jia, X. Angew. Chem. Int. Ed. 2016, 55,519. |
[23] | Yuan, W.; Tan, Y.; Gong, Y.; Lu, P.; Lam, J. W.Y.; Shen, X.; Feng, C.; Sung, H. H.-Y.; Lu, Y.; Williams, I. D.; Sun, J.; Zhang, Y.; Tang, B. Z. Adv. Mater. 2013, 25,2837. |
[24] | Sagara, Y.; Yamane, S.; Mitani, M.; Weder, C.; Kato, T. Adv. Mater. 2016, 28,1073. |
[25] | Shen, X.; Wang, Y.; Zhao, E.; Yuan, W.; Liu, Y.; Lu, P.; Qin, A.; Ma, Y.; Sun, J.; Tang, B. Z. J. Phys. Chem. C 2013, 117,7334. |
[26] | Zhang, X.; Chi, Z.; Zhang, J.; Li, H.; Xu, B.; Li, X.; Liu, S.; Zhang, Y.; Xu, J. J. Phys. Chem. B 2011, 115,7606. |
[27] | Jadhav, T.; Dhokale, B.; Mobin, S. M.; Misra, R. J. Mater. Chem. C 2015, 3,9981. |
[28] | Yang, J.; Li, L.; Yu, Y.; Ren, Z.; Peng, Q.; Ye, S.; Li, Q.; Li, Z. Mater. Chem. Front. 2017, 1,91. |
[29] | Gong, Y. B.; Zhang, P.; Gu, Y. R.; Wang, J. Q.; Han, M. M.; Chen, C.; Zhan, X. J.; Xie, Z. L.; Zou, B.; Peng, Q.; Chi, Z. G.; Li, Z. Adv. Opt. Mater. 2018, 6,1800198. |
[30] | Gong, Y.; He, S.; Li, Y.; Li, Z.; Liao, Q.; Gu, Y.; Wang, J.; Zou, B.; Li, Q.; Li, Z. Adv. Opt. Mater. 2020, 8,1902036. |
[31] | Xue, S.; Qiu, X.; Sun, Q.; Yang, W. J. Mater. Chem. C 2016, 4,1568. |
[32] | Wang, Y.; Liu, W.; Bu, L.; Li, J.; Zheng, M.; Zhang, D.; Sun, M.; Tao, Y.; Xue, S.; Yang, W. J. Mater. Chem. C 2013, 1,856. |
[33] | Jiang, H.; Liu, X. J.; Jia, R. R.; Xu, T. H.; Xia, M. RSC. Adv. 2019, 9,30381. |
[34] | Zhang, X.; Chi, Z.; Xu, B.; Jiang, L.; Zhou, X.; Zhang, Y.; Liu, S.; Xu, J. Chem. Commun. 2012, 48,10895. |
[35] | Bu, L.; Sun, M.; Zhang, D.; Liu, W.; Wang, Y.; Zheng, M.; Xue, S.; Yang, W. J. Mater. Chem. C 2013, 1,2028. |
[36] | Yang, W.; Liu, C.; Lu, S.; Du, J.; Gao, Q.; Zhang, R.; Liu, Y.; Yang, C. J. Mater. Chem. C 2018, 6,290. |
[37] | Lei, Y.; Zhou, Y.; Qian, L.; Wang, Y.; Liu, M.; Huang, X.; Wu, G.; Wu, H.; Ding, J.; Cheng, Y. J. Mater. Chem. C 2017, 5,5183. |
[38] | He, Z.; Zhang, L.; Mei, J.; Zhang, T.; Lam, J. W.Y.; Shuai, Z.; Dong, Y. Q.; Tang, B. Z. Chem. Mater. 2015, 27,6601. |
[39] | Dong, Y.; Xu, B.; Zhang, J.; Tan, X.; Wang, L.; Chen, J.; Lv, H.; Wen, S.; Li, B.; Ye, L.; Zou, B.; Tian, W. Angew. Chem. Int. Ed. 2012, 51,10782. |
[40] | Huang, B.; Chen, W. C.; Li, Z.; Zhang, J.; Zhao, W.; Feng, Y.; Tang, B. Z.; Lee, C. S. Angew. Chem. Int. Ed. 2018, 57,12473. |
[41] | Xiong, Y.; Huang, J.; Liu, Y.; Xiao, B.; Xu, B.; Zhao, Z.; Tang, B. Z. J. Mater. Chem. C 2020, 8,2460. |
[42] | Jhaa, P.; Chandra, B. P. Luminescence 2014, 29,977. |
[43] | Xie, Y.; Li, Z. Mater. Chem. Front. 2020, 4,317. |
[44] | Chang, K.; Li, Q.; Li, Z. Chin. J. Org. Chem. 2020, 40,3656. (in Chinese). |
[44] | ( 常凯, 李倩倩, 李振, 有机化学, 2020, 40,3656.) |
[45] | Xu, B.; He, J.; Mu, Y.; Zhu, Q.; Wu, S.; Wang, Y.; Zhang, Y.; Jin, C.; Lo, C.; Chi, Z.; Lien, A.; Liu, S.; Xu, J. Chem. Sci. 2015, 6,3236. |
[46] | Wang, C.; Xu, B.; Li, M.; Chi, Z.; Xie, Y.; Li, Q.; Li, Z. Mater. Horiz. 2016, 3,220. |
[47] | Xie, Y.; Tu, J.; Zhang, T.; Wang, J.; Xie, Z.; Chi, Z.; Peng, Q.; Li, Z. Chem. Commun. 2017, 53,11330. |
[48] | Tu, J.; Liu, F.; Wang, J.; Li, X.; Gong, Y.; Fan, Y.; Han, M.; Li, Q.; Li, Z. ChemPhotoChem 2019, 3,133. |
[49] | Liu, F.; Tu, J.; Wang, X.; Wang, J.; Gong, Y.; Han, M.; Dang, X.; Liao, Q.; Peng, Q.; Li, Q.; Li, Z. Chem. Commun. 2018, 54,5598. |
[50] | Xu, B.; Li, W.; He, J.; Wu, S.; Zhu, Q.; Yang, Z.; Wu, Y. C.; Zhang, Y.; Jin, C.; Lu, P. Y.; Chi, Z.; Liu, S.; Xu, J.; Bryce, M. R. Chem. Sci. 2016, 7,5307. |
[51] | Huang, G.; Jiang, Y.; Wang, J.; Li, Z.; Li, B. S.; Tang, B. Z. J. Mater. Chem. C 2019, 7,12709. |
[52] | Jiang, Y.; Wang, J.; Huang, G.; Li, Z.; Li, B. S.; Tang, B. Z. J. Mater. Chem. C 2019, 7,11790. |
[53] | Wang, C.; Yu, Y.; Chai, Z.; He, F.; Wu, C.; Gong, Y.; Han, M.; Li, Q.; Li, Z. Mater. Chem. Front. 2019, 3,32. |
[54] | Wang, C.; Yu, Y.; Yuan, Y.; Ren, C.; Liao, Q.; Wang, J.; Chai, Z.; Li, Q.; Li, Z. Matter 2019, 2,181. |
[55] | Xu, S.; Liu, T.; Mu, Y.; Wang, Y.; Chi, Z.; Lo, C.; Liu, S.; Zhang, Y.; Lien, A.; Xu, J. Angew. Chem. Int. Ed. 2015, 54,874. |
[56] | Yang, J.; Gao, X.; Xie, Z.; Gong, Y.; Fang, M.; Peng, Q.; Chi, Z.; Li, Z. Angew. Chem. Int. Ed. 2017, 56,15299. |
[57] | Yang, J.; Qin, J.; Geng, P.; Wang, J.; Fang, M.; Li, Z. Angew. Chem. Int. Ed. 2018, 130,14370. |
[58] | Chen, Y.; Xu, C.; Xu, B.; Mao, Z.; Li, J. A.; Yang, Z.; Peethani, N. R.; Liu, C.; Shi, G.; Gu, F. L.; Zhang, Y.; Chi, Z. Mater. Chem. Front. 2019, 3,1800. |
[59] | Neena, K. K.; Sudhakar, P.; Dipak, K.; Thilagar, P. Chem. Commun. 2017, 53,3641. |
[60] | Arivazhagan, C.; Maity, A.; Bakthavachalam, K.; Jana, A.; Panigrahi, S. K.; Suresh, E.; Das, A.; Ghosh, S. Chem. Eur. J. 2017, 23,7046. |
[61] | Fang, M.; Yang, J.; Liao, Q.; Gong, Y.; Xie, Z.; Chi, Z.; Peng, Q.; Li, Q.; Li, Z. J. Mater. Chem. C 2017, 5,9879. |
[62] | Yu, Y.; Wang, C.; Wei, Y.; Fan, Y.; Yang, J.; Wang, J.; Han, M.; Li, Q.; Li, Z. Adv. Opt. Mater. 2019, 7,1900505. |
[63] | Tu, J.; Fan, Y.; Wang, J.; Li, X.; Liu, F.; Han, M.; Wang, C.; Li, Q.; Li, Z. J. Mater. Chem. C 2019, 7,12256. |
[64] | Wang, J.; Chai, Z.; Wang J.; Wang, C.; Han, M.; Liao, Q.; Huang, A.; Lin, P.; Li, C.; Li, Q.; Li, Z. Angew. Chem. Int. Ed. 2019, 58,17297. |
[65] | Yu, Y.; Fan, Y.; Wang, C.; Wei, Y.; Liao, Q.; Li, Q.; Li, Z. J. Mater. Chem. C 2019, 7,13759. |
[66] | Liu, X.; Jia, Y.; Jiang, H.; Gao, G.; Xia, M. Acta Chim. Sinica 2019, 77,1194. (in Chinese). |
[66] | ( 刘笑静, 贾彦荣, 江豪, 高贯雷, 夏敏, 化学学报, 2019, 77,1194.) |
[67] | Li, W.; Huang, Q.; Mao, Z.; Li.Q.; Jiang, L.; Xie, Z.; Xu, R.; Yang, Z.; Zhao, J.; Yu, T.; Zhang, Y.; Aldred, M. P.; Chi, Z. Angew. Chem. Int. Ed. 2018, 130,12909. |
[68] | Sun, Q.; Zhang, K.; Zhang, Z.; Tang, L.; Xie, Z.; Chi, Z.; Xue, S.; Zhang, H.; Yang, W. Chem. Commun. 2018, 54,8206. |
[69] | Yang, J.; Ren, Z.; Xie, Z.; Liu, Y.; Wang, C.; Xie, Y.; Peng, Q.; Xu, B.; Tian, W.; Zhang, F.; Chi, Z.; Li, Q.; Li, Z. Angew. Chem. Int. Ed. 2017, 56,880. |
[70] | Wang, J.; Wang, C.; Gong, Y.; Liao, Q.; Han, M.; Jiang, T.; Dang, Q.; Li, Y.; Li, Q.; Li, Z. Angew. Chem. Int. Ed. 2018, 130,17063. |
[71] | Li, J. A.; Zhou, J.; Mao, Z.; Xie, Z.; Yang, Z.; Xu, B.; Liu, C.; Chen, X.; Ren, D.; Pan, H.; Shi, G.; Zhang, Y.; Chi, Z. Angew. Chem. Int. Ed. 2018, 57,6449. |
[72] | Mukherjee, S.; Thilagar, P. Chem. Commun. 2015, 51,10988. |
[73] | Forni, A.; Lucenti, E.; Botta, C.; Cariati, E. J. Mater. Chem. C 2018, 6,4603. |
[74] | Ma, H.; Lv, A.; Fu, L.; Wang, S.; An, Z.; Shi, H.; Huang, W. Ann. Phys. 2019, 531,1800482. |
[75] | Wang, Y.; Yang, J.; Gong, Y.; Fang, M.; Li, Z.; Tang, B. Z. SmartMat 2020, 1,e1006. |
[76] | Yang, J.; Fang, M.; Li, Z. InfoMat 2020, 2,791. |
[77] | Fang, M.; Yang, J.; Li, Z. Chinese J. Polym. Sci. 2019, 37,383. |
[78] | Dang, Q.; Jiang, Y.; Wang, J.; Wang, J.; Zhang, Q.; Zhang, M.; Luo, S.; Xie, Y.; Pu, K.; Li, Q.; Li, Z. Adv. Mater. 2020, 32,2006752. |
[79] | Wang, Y.; Yang, J.; Fang, M.; Yu, Y.; Zou, B.; Wang, L.; Tian, Y.; Cheng, J.; Tang, B.; Li, Z. Matter 2020, 2,449. |
[80] | Yuan, W. Z.; Shen, X. Y.; Zhao, H.; Lam, J. W.Y.; Tang, L.; Lu, P.; Wang, C.; Liu, Y.; Wang, Z.; Zheng, Q.; Sun, J. Z.; Ma, Y.; Tang, B. Z. J. Phys. Chem. C 2010, 114,6090. |
[81] | Zhang, L.; Li, M.; Gao, Q.; Chen, C. Chin. J. Org. Chem. 2020, 40,516. |
[82] | An, Z.; Zheng, C.; Tao, Y.; Chen, R.; Shi, H.; Chen, T.; Wang, Z.; Li, H.; Deng, R.; Liu, X.; Huang, W. Nat. Mater. 2015, 14,685. |
[83] | Chai, Z.; Wang, C.; Wang, J.; Liu, F.; Xie, Y.; Zhang, Y. Z.; Li, J. R.; Li, Q.; Li, Z. Chem. Sci. 2017, 8,8336. |
[84] | Che, W.; Gong, Y.; Tu, L.; Han, M.; Li, X.; Xie, Y.; Li, Z. Phys. Chem. Chem. Phys. 2020, 9,1262. |
[85] | Yang, J.; Ren, Z.; Chen, B.; Fang, M.; Zhao, Z.; Tang, B.; Peng, Q.; Li, Z. J. Mater. Chem. C 2017, 5,9242. |
[86] | Tian, Y.; Gong, Y.; Liao, Q.; Wang, Y.; Ren, J.; Fang, M.; Yang, J.; Li, Z. Cell Rep. Phys. Sci. 2020, 1,100052. |
[87] | Yang, J.; Gao, H.; Wang, Y.; Yu, Y.; Gong, Y.; Fang, M.; Ding, D.; Hu, W.; Tang, B. Z.; Li, Z. Mater. Chem. Front. 2019, 3,1391. |
[88] | Yang, J.; Zhen, X.; Wang, B.; Gao, X.; Ren, Z.; Wang, J.; Xie, Y.; Li, J.; Peng, Q.; Pu, K.; Li, Z. Nat. Commun. 2018, 9,840. |
[89] | Dang, Q.; Hu, L.; Wang, J.; Zhang, Q.; Han, M.; Luo, S.; Gong, Y.; Wang, C.; Li, Q.; Li, Z. Chem. Eur. J. 2019, 25,7031. |
[90] | Liao, Q.; Gao, Q.; Wang, J.; Gong, Y.; Peng, Q.; Tian, Y.; Fan, Y.; Guo, H.; Ding, D.; Li, Q.; Li, Z. Angew. Chem. Int. Ed. 2020, 59,9946. |
[91] | Fang, M.; Yang, J.; Xiang, X.; Xie, Y.; Dong, Y.; Peng, Q.; Li, Q.; Li, Z. Mater. Chem. Front. 2018, 2,2124. |
[92] | Zheng, S.; Zhu, T.; Wang, Y.; Yang, T.; Yuan, W. Z. Angew. Chem. Int. Ed. 2020, 59,10018. |
[93] | Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D. Chem. Rev. 2012, 112,2208. |
[94] | Yu, P.; Zhen, Y.; Dong, H.; Hu, W. Chem 2019, 5,2814. |
[95] | Wang, C.; Dong, H.; Jiang, L.; Hu, W. Chem. Soc. Rev. 2018, 47,422. |
[96] | Dong, H.; Fu, X.; Liu, J.; Wang, Z.; Hu, W. Adv. Mater. 2013, 25,6158. |
[97] | Hu, W. Organic field effect transistor, Science press, Beijing, 2011. (in Chinese). |
[97] | ( 胡文平, 有机场效应晶体管, 科学出版社, 北京, 2011.) |
[98] | Moon, H.; Zeis, R.; Borkent, E.; Besnard, C.; Lovinger, A.; Siegrist, T.; Kloc, C.; Bao, Z. J. Am. Chem. Soc. 2004, 126,15322. |
[99] | Dou, J.; Zheng, Y.; Yao, Z.; Yu, Z.; Lei, T.; Shen, X.; Luo, X.; Sun, J.; Zhang, S.; Ding, Y.; Han, G.; Yi, Y.; Wang, J.; Pei, J. J. Am. Chem. Soc. 2015, 137,15947. |
[100] | Lei, T.; Wang, J.; Pei, J. Chem. Mater. 2014, 26,594. |
[101] | Wang, C.; Qin, Y.; Sun, Y.; Guan, Y.; Xu, W.; Zhu, D. ACS Appl. Mater. Interfaces 2015, 7,15978. |
[102] | Yassar, A. Polym. Sci. Ser. C 2014, 56,4. |
[103] | Payne, M.; Parkin, S.; Anthony, J.; Kuo, C.; Jackson, T. J. Am. Chem. Soc. 2005, 127,4986. |
[104] | Zhan, X.; Zhang, J.; Gong, Y.; Tang, S.; Tu, J.; Xie, Y.; Peng, Q.; Yu, G.; Li, Z. Mater. Chem. Front. 2017, 1,2341. |
[105] | Ding, L.; Li, H.; Lei, T.; Ying, H.; Wang, R.; Zhou, Y.; Su, Z.; Pei, J. Chem. Mater. 2012, 24,1944. |
[106] | Wang, X.; Zhuang, F.; Zhou, X.; Yang, D.; Wang, J.; Pei, J. J. Mater. Chem. C 2014, 2,8152. |
[107] | Chung, H.; Diao, Y. J. Mater. Chem. C 2016, 4,3915. |
[108] | Ellern, A.; Bernstein, J.; Becker, J.; Zamir, S.; Shahal, L. Chem. Mater. 1994, 6,1378. |
[109] | Jiang, H.; Yang, X.; Cui, Z.; Liu, Y.; Li, H.; Hu, W.; Liu, Y.; Zhu, D. Appl. Phys. Lett. 2007, 91,123505. |
[110] | Liu, D.; Li, C.; Niu, S.; Li, Y.; Hu, M.; Li, Q.; Zhu, W.; Zhang, X.; Dong, H.; Hu, W. J. Mater. Chem. C 2019, 7,5925. |
[111] | Schneider, J.; Black, H.; Lin, H.; Perepichka, D. ChemPhysChem 2015, 16,1173. |
[112] | Li, Y.; Han, M.; Yang, W.; Guo, J.; Chang, K.; Wang, J.; Min, J.; Li, Q.; Li, Z. Mater. Chem. Front. 2019, 3,1840. |
[113] | Gong, Y.; Chang, K.; Chen, C.; Han, M.; Zhan, X.; Min, J.; Jiao, X.; Li, Q.; Li, Z. Mater. Chem. Front. 2019, 3,93. |
[114] | Liu, F.; Bi, S.; Wang, X.; Leng, X.; Han, M.; Xue, B.; Li, Q.; Zhou, H.; Li, Z. Sci. China Chem. 2019, 62,739. |
[115] | Jin, M.; Zhu, Z.; Liao, Q.; Li, Q.; Li, Z. Chinese J. Polym. Sci. 2020, 38,118. |
[116] | Zheng, A.; Wang, J.; Xu, N.; Zhu, R.; Yuan, Y.; Zhang, J.; Zhang, J.; Li, Z.; Wang, P. ACS Photonics 2018, 5,4694. |
[117] | Fitzner, R.; Elschner, C.; Weil, M.; Uhrich, C.; K?rner, C.; Riede, M.; Leo, K.; Pfeiffer, M.; Reinold, E.; Osteritz, E.; B?uerle, P. Adv. Mater. 2012, 24,675. |
/
〈 |
|
〉 |