研究论文

十二烷基硫酸钠辅助制备高电容性能多孔碳

  • 焦建超 ,
  • 朱玉鑫 ,
  • 彭晓薇 ,
  • 金世航 ,
  • 张云强 ,
  • 李梅
展开
  • 齐鲁工业大学(山东省科学院)材料科学与工程学院 济南 250353
* E-mail: ; Tel.: 13854137578

收稿日期: 2021-01-12

  网络出版日期: 2021-04-14

基金资助

齐鲁工业大学国际合作基金(QLUTGJHZ2018023); 2020年山东省大学生创新训练计划项目(S202010431115); 齐鲁工业大学(山东省科学院)本科生学术攀登计划

Preparation of High Capacitive Performance Porous Carbon Assisted by Sodium Dodecyl Sulfate

  • Jianchao Jiao ,
  • Yuxin Zhu ,
  • Xiaowei Peng ,
  • Shihang Jin ,
  • Yunqiang Zhang ,
  • Mei Li
Expand
  • School of Materials Science and Engineering, Qilu University of Technology, Jinan 250353, China
†These authors contributed equally to this work.

Received date: 2021-01-12

  Online published: 2021-04-14

Supported by

International Cooperation Foundation of Qilu University of Technology(QLUTGJHZ2018023); Innovation Training Program for College Students of Shandong Province in 2020(S202010431115); Undergraduate Academic Climbing Program of Qilu University of Technology (Shandong Academy of Sciences)

摘要

本工作通过一步水浴法制备高氮/氧含量密胺树脂(MF), 引入阴离子型表面活性剂十二烷基硫酸钠(SDS)改变聚合物的反应历程, 使进入SDS胶束中的三聚氰胺与甲醛在盐酸催化条件下进行聚合反应, 高温碳化后成功制备MF衍生多孔碳材料. 对MF衍生多孔碳材料分别进行了扫描电镜、比表面积等表征, 结果表明, 其具有多孔互穿网络结构, 比表面积高达387.86 m2?g-1, 且孔径分布适宜(3.62 nm). 作为超级电容器(SCs)电极材料, 在1.0 A?g-1下的比电容值为349.6 F?g-1, 20.0 A?g-1时(254.6 F?g-1)仍能维持1.0 A?g-1时73.0%的电容保持率, 倍率性能优异. 该样品在10.0 A?g-1下循环15000次后的比电容值几乎没有衰减, 循环稳定性能优越. 此研究结果表明SDS可辅助提升MF衍生多孔碳材料的电容性能, 发展潜力巨大.

本文引用格式

焦建超 , 朱玉鑫 , 彭晓薇 , 金世航 , 张云强 , 李梅 . 十二烷基硫酸钠辅助制备高电容性能多孔碳[J]. 化学学报, 2021 , 79(6) : 778 -786 . DOI: 10.6023/A21010007

Abstract

Benefiting from the inducing effect of sodium dodecyl sulfate (SDS) during the polymerization process of melamine and formaldehyde, melamine resin (MF)-derived porous carbon materials with high nitrogen and oxygen content have been synthesized via an annealing-followed water bath method in this work. To study the effect of SDS on the synthesis and properties of MF-derived porous carbon materials, the microstructure and composition of as-prepared samples are characterized by scanning electron microscopy (SEM), nitrogen adsorption/desorption and X-ray photoelectron spectroscopy (XPS). It can be seen from SEM images that sample of the best additive amount (MFC-SDS30) has the interpenetrating network structure, which is conducive to the rapid transfer of electrons and electrolyte ions. Nitrogen adsorption/desorption isotherms indicate that all samples have large specific surface area (SSA) and more micropores/mesopores, which are caused by the pyrolysis of SDS at 700 ℃. MFC-SDS30 has the largest SSA (387.86 m2?g-1) and a suitable pore size distribution (3.62 nm), which effectively improve the ion diffusion mobility and shorten the ion diffusion pathways. Interestingly, the XPS results show that MFC-SDS30 has high N atom content (15.5 at.%) and O atom content (6.5 at.%) without any additional doped treatment, so the abundant pseudocapacitance is contributed through the rapid N/O atoms redox reaction. Due to the above structural characteristics, MFC-SDS30 exhibits high specific capacitance value (Csp) of 349.6 F?g-1 at 1.0 A?g-1, and the Csp (254.6 F?g-1) at 20.0 A?g-1 still maintains 73.0% of that at 1.0 A?g-1, showing good capacitive performance as electrode material for supercapacitors (SCs). The Csp of MFC-SDS30 has almost no attenuation after 15000 cycles at 10.0 A?g-1, which possesses good cycle stability. Besides, the maximum energy density of symmetrical SCs based on MFC-SDS30 is 9.2 Wh?kg-1 at the power density of 250 W?kg-1, and the energy density still reaches 4.0 Wh?kg-1 at 5000 W?kg-1, which is better than many reported carbon materials. Therefore, MF-derived porous carbon materials assisted by SDS can be a promising electrode material for SCs by means of a green and efficient method.

参考文献

[1]
Díez, N.; Mysyk, R.; Zhang, W.; Goikolea, E.; Carriazo, D. J. Mater. Chem. A 2017, 5, 14619.
[2]
Li, H.; Gong, Y.; Fu, C.; Zhou, H.; Yang, W.; Guo, M.; Li, M.; Kuang, Y. J. Mater. Chem. A 2017, 5, 3875.
[3]
Kwon, H.; Han, D. J.; Lee, B. Y. RSC Adv. 2020, 10, 41495.
[4]
Shinde, P. A.; Khan, M. F.; Rehman, M. A.; Jung, E.; Pham, Q. N.; Won, Y.; Jun, S. C. CrystEngComm 2020, 22, 6360.
[5]
Du, J.; Liu, L.; Yu, Y.; Qin, Y.; Wu, H.; Chen, A. Nanoscale 2019, 11, 4453.
[6]
Zhang, N.; Liu, F.; Xu, S.; Wang, F.; Yu, Q.; Liu, L. J. Mater. Chem. A 2017, 5, 22631.
[7]
Yao, L.; Lin, J.; Yang, H.; Wu, Q.; Wang, D.; Li, X.; Deng, L.; Zheng, Z. Nanoscale 2019, 11, 11086.
[8]
Benzigar, M. R.; Talapaneni, S. N.; Joseph, S.; Ramadass, K.; Singh, G.; Scaranto, J.; Ravon, U.; Al-Bahily, K.; Vinu, A. Chem. Soc. Rev. 2018, 47, 2680.
[9]
Du, J.; Liu, L.; Yu, Y.; Lv, H.; Zhang, Y.; Chen, A. J. Mater. Chem. A 2019, 7, 1038.
[10]
Yang, X.; Xu, J.; Chen, X. Chinese J. Chem. 2020, 38, 353.
[11]
Xie, L.; Su, F.; Xie, L.; Guo, X.; Wang, Z.; Kong, Q.; Sun, G.; Ahmad, A.; Li, X.; Yi, Z.; Chen, C. Mater. Chem. Front. 2020, 4, 2610.
[12]
Bi, R.; Mao, D.; Wang, J.; Yu, R.; Wang, D. Acta Chim. Sinica 2020, 78, 1200. (in Chinese)
[12]
(毕如一, 毛丹, 王江艳, 于然波, 王丹, 化学学报, 2020, 78, 1200.)
[13]
Liu, Z.; Du, Z.; Xing, W.; Yan, Z. Mater. Lett. 2014, 117, 273.
[14]
Wang, C.; Wu, D.; Wang, H.; Gao, Z.; Xu, F.; Jiang, K. J. Power Sources 2017, 363, 375.
[15]
Li, G.; Mao, K.; Liu, M.; Yan, M.; Zhao, J.; Zeng, Y.; Yang, L.; Wu, Q. Adv. Mater. 2020, 32, 2004632.
[16]
Nasini, U. B.; Bairi, V. G.; Ramasahayam, S. K.; Bourdo, S. E.; Viswanathan, T.; Shaikh, A. U. J. Power Sources 2014, 250, 257.
[17]
Tutunchi, A.; Kamali, R.; Kianvash, A. J. Adhesion 2015, 91, 663.
[18]
Li, M.; Zhang, Y.; Yang, L.; Liu, Y.; Yao, J. Electrochim. Acta 2015, 166, 310.
[19]
Fic, K.; Lota, G.; Frackowiak, E. Electrochim. Acta 2011, 1333, 206.
[20]
Kailasam, K.; Jun, Y.; Katekomol, P.; Epping, J.; Hong, W.; Thomas, A. Chem. Mater. 2010, 22, 428.
[21]
Zhang, H.; Wang, Y.; Liu, C.; Jiang, H. J. Alloy. Compd. 2012, 517, 1.
[22]
Yang, J.; Zhai, Y.; Deng, Y.; Gu, D.; Li, Q.; Wu, Q.; Huang, Y.; Tu, B.; Zhao, D. J. Colloid Interface Sci. 2010, 342, 579.
[23]
Li, W.; Li, B.; Shen, M.; Gao, Q.; Hou, J. Chem. Eng. J. 2020, 384, 123309.
[24]
Fic, K.; Lota, G.; Frackowiak, E. Electrochim. Acta 2010, 55, 7484.
[25]
Liu, F.; Wang, Z.; Zhang, H.; Jin, L.; Chu, X.; Gu, B.; Huang, H.; Yang, W. Carbon 2019, 149, 105.
[26]
Zhu, D.; Jiang, J.; Sun, D.; Qian, X.; Wang, Y.; Li, L.; Wang, Z.; Chai, X.; Gan, L.; Liu, M. J. Mater. Chem. A 2018, 6, 12334.
[27]
Mahbub, S.; Molla, M. R.; Saha, M.; Shahriar, I.; Hoque, M. A.; Halim, M. A.; Rub, M. A.; Khan, M. A.; Azum, N. J. Mol. Liq. 2019, 283, 263.
[28]
Kim, J. H.; Ko, Y.; Kim, Y. A.; Kim, K. S.; Yang, C. J. Alloy. Compd. 2021, 855, 157282.
[29]
Pang, Z.; Li, G.; Zou, X.; Sun, C.; Hu, C.; Tang, W.; Ji, L.; Hsu, H.; Xu, Q.; Lu, X. J. Energy Chem. 2021, 56, 512.
[30]
Zheng, C.; Qian, W.; Cui, C.; Zhang, Q.; Jin, Y.; Zhao, M.; Tan, P. Carbon 2012, 50, 5167.
[31]
Shan, Q.; Huo, W.; Shen, M.; Jing, C.; Peng, Y.; Pu, H.; Zhang, Y. Chinese Chem. Lett. 2020, 31, 2245.
[32]
Liu, X.; Lai, C.; Xiao, Z.; Zou, S.; Liu, K.; Yin, Y.; Liang, T.; Wu, Z. ACS Appl. Energ. Mater. 2019, 2, 3185.
[33]
Sevilla, M.; Fuertes, A. B. ACS Nano 2014, 8, 5069.
[34]
Bo, X.; Xiang, K.; Zhang, Y.; Shen, Y.; Chen, S.; Wang, Y.; Xie, M.; Guo, X. J. Energy Chem. 2019, 39, 1.
[35]
Zhang, H.; Wang, B.; Yu, X.; Li, J.; Shang, J.; Yu, J. Angew. Chem. Int. Ed. 2020, 132, 19558.
[36]
Du, W.; Wang, X.; Zhan, J.; Sun, X.; Kang, L.; Jiang, F.; Zhang, X.; Shao, Q.; Dong, M.; Liu, H.; Murugadoss, V.; Guo, Z. Electrochim. Acta 2019, 296, 907.
[37]
Yang, G.; Wang, Y.; Zhou, S.; Jia, S.; Xu, H.; Zang, J. J. Mater. Sci. 2019, 54, 2222.
[38]
Benzigar, M. R.; Talapaneni, S. N.; Joseph, S.; Ramadass, K.; Singh, G.; Scaranto, J.; Ravon, U.; Al-Bahily, K.; Vinu, A. Chem. Soc. Rev. 2018, 47, 2680.
[39]
Wang, G.; Zhang, L.; Zhang, J. Chem. Soc. Rev. 2012, 41, 797.
[40]
Ma, F.; Sun, L.; Zhao, H.; Li, Q.; Huo, L.; Xia, T.; Gao, S. Chem. Res. Chinese U. 2013, 29, 735.
[41]
Feng, J.; Ye, S.; Lu, X.; Tong, Y.; Li, G. ACS Appl. Mater. Inter. 2015, 7, 11444.
[42]
Deng, Y.; Xie, Y.; Zou, K.; Ji, X. J. Mater. Chem. A 2016, 4, 1144.
[43]
Li, M.; Zhang, Y.; Yang, L.; Liu, Y.; Yao, J. Electrochim. Acta 2015, 166, 310.
[44]
Wei, T.; Wei, X.; Yang, L.; Xiao, H.; Gao, Y.; Li, H. J. Power Sources 2016, 331, 373.
[45]
Wang, J.; Liu, H.; Sun, H.; Hua, W.; Wang, H.; Liu, X.; Wei, B. Carbon 2018, 127, 85.
[46]
Chen, H.; Zhou, M.; Wang, Z.; Zhao, S.; Guan, S. Electrochim. Acta 2014, 148, 187.
[47]
Liu, Y.; Cao, L.; Luo, J.; Peng, Y.; Ji, Q.; Dai, J.; Zhu, J.; Liu, X. ACS Sustain. Chem. Eng. 2019, 7, 2763.
[48]
Miao, L.; Zhu, D.; Liu, M.; Duan, H.; Wang, Z.; Lv, Y.; Xiong, W.; Zhu, Q.; Li, L.; Chai, X.; Gan, L. Electrochim. Acta 2018, 274, 378.
[49]
Díez, N.; Sevilla, M.; Fuertes, A. B. ChemElectroChem 2020, 7, 3798.
[50]
Zhu, J.; Yang, J.; Miao, R.; Yao, Z.; Zhuang, X.; Feng, X. J. Mater. Chem. A 2016, 4, 2286.
[51]
Wang, H.; Yi, H.; Zhu, C.; Wang, X.; Fan, H. Nano Energy 2015, 13, 658.
[52]
Zhao, Y.; Lu, M.; Tao, P.; Zhang, Y.; Gong, X.; Yang, Z.; Zhang, G.; Li, H. J. Power Sources 2016, 307, 391.
[53]
Zhao, J.; Gong, J.; Li, Y.; Cheng, K.; Ye, K.; Zhu, K.; Yan, J.; Cao, D.; Wang, G. Acta Chim. Sinica 2018, 76, 31. (in Chinese)
[53]
(赵婧, 龚俊伟, 李一举, 程魁, 叶克, 朱凯, 闫俊, 曹殿学, 王贵领, 化学学报, 2018, 76, 31.)
文章导航

/