综述

水合肼分解产氢催化剂研究进展

  • 张安琪 ,
  • 姚淇露 ,
  • 卢章辉
展开
  • 江西师范大学化学化工学院 功能有机小分子教育部重点实验室 南昌 330022

张安琪, 1997年出生, 2019年本科毕业于巢湖学院, 随后加入江西师范大学卢章辉教授课题组攻读硕士学位, 主要研究方向为纳米材料的可控合成及其在能源与催化领域的应用.

姚淇露, 江西师范大学先进材料研究院助理研究员. 2017年于江西师范大学获得理学博士学位. 毕业后留校进入先进材料研究院工作. 主要研究方向为纳米材料的可控合成及其在能源与催化领域的应用. 以第一作者或通讯作者在国内外知名期刊发表SCI收录论文20余篇; 获授权发明专利5项; 获江西省自然科学奖一等奖(第二完成人).

卢章辉, 江西师范大学化学化工学院教授/博导, 江西省赣鄱英才555工程领军人才. 2011年于日本国立神户大学获得博士学位, 2008年10月至2011年9月, 在日本产业技术综合研究所从事研究, 2011年10月至今在江西师范大学工作. 主要从事能源催化研究, 在国内外知名期刊发表SCI收录论文110篇, 被引4500余次, 获江西省自然科学奖一等奖(第一完成人).

收稿日期: 2021-03-31

  网络出版日期: 2021-05-11

基金资助

国家自然科学基金(21763012); 江西师范大学研究生创新基金(YJS2020020)

Recent Progress on Catalysts for Hydrogen Evolution from Decomposition of Hydrous Hydrazine

  • Anqi Zhang ,
  • Qilu Yao ,
  • Zhang-Hui Lu
Expand
  • Key Laboratory of Functional Small Molecules for Ministry of Education, School of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China

Received date: 2021-03-31

  Online published: 2021-05-11

Supported by

National Natural Science Foundation of China(21763012); Post-graduate’s Innovation Fund Project of Jiangxi Normal University(YJS2020020)

摘要

氢气作为21世纪最具发展前景的清洁能源, 一直备受关注. 寻找安全高效的储氢材料以转型到氢能社会是当前面临的最大挑战之一. 水合肼(N2H4•H2O)具有高含氢量(w=8.0%), 完全分解产氢副产物仅为氮气和水, 被视为一种极具应用潜力的液相化学储氢材料. 开发高效、高选择性的催化剂以催化水合肼完全分解, 是研究水合肼分解产氢的关键. 本综述总结了水合肼分解产氢催化剂的设计、合成及其催化性能. 简要分析了肼分解的机理. 此外, 讨论了提高水合肼分解产氢催化剂的选择性和活性的策略, 比如添加强碱助剂/碱性载体、形成合金、降低金属催化剂的结晶度、减小粒子尺寸、以及增强金属与载体相互作用. 本研究进展可以为设计合成具有更高活性的氮基氢化物产氢催化剂提供指导和思路.

本文引用格式

张安琪 , 姚淇露 , 卢章辉 . 水合肼分解产氢催化剂研究进展[J]. 化学学报, 2021 , 79(7) : 885 -902 . DOI: 10.6023/A21030126

Abstract

Hydrogen with remarkable energy density has attracted much attention as the green, sustainable chemical energy carrier and a substitute for traditional fossil fuels. The discovery of safe and efficient hydrogen storage materials for the transition to a hydrogen energy society is one of the biggest challenges for hydrogen energy applications today. Hydrous hydrazine (N2H4•H2O), with its high hydrogen content (w=8.0%) and the advantage of CO-free hydrogen production, has significant advantages in hydrogen storage and release and is considered as a promising liquid-phase chemical hydrogen storage material. The development of efficient and highly selective catalysts is the key to release hydrogen from the decomposition of hydrous hydrazine. In the past decade, a lot of catalysts have been developed to improve the kinetic properties for hydrogen generation. In this review, we focus on the recent progress on catalyst design, synthesis and catalytic performance of the catalyst in hydrogen production from the selective decomposition of hydrous hydrazine. Ir, Rh and Ni monometallic catalysts were found to be very active toward the dehydrogenation of hydrazine. Among all the catalysts investigated, supported Pt-Ni, Rh-Ni and Pt-Co catalysts showed the highest activity. The mechanism of hydrazine decomposition was briefly analyzed. The cleavage of the N―H bond of N2H4 will facilitate the formation of H2 and N2, while N―N bond cleavage will result in the formation of NH3 and N2. In addition, we reviewed and discussed the strategies for promoting H2 selectivity and activity of catalysts, such as the addition of strong base and/or alkaline carrier, formation of metal alloys, reduction of metal crystallinity and particle size, as well as the enhancement of the interaction between metal and support. The progress of this research may provide guidance for obtaining more active catalysts toward hydrogen production from nitrogen-based hydrides.

参考文献

[1]
Gong, K.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Science 2009, 323, 760.
[2]
Pan, Z. Y.; Tang, Z.; Zhan, Y. Z.; Sun, D. Tungsten 2020, 2, 390.
[3]
He, B.; Ren, Y. X.; Dai, T. J. Rare Metals 2019, 40, 219.
[4]
Zhang, T. L.; Lu, Z. G.; Zhang, L. Y. Chin. Chem. Lett. 2020, 31, 3135.
[5]
Liang, Z. B.; Zhao, R.; Qiu, T. J.; Zou, R. Q.; Xu, Q. EnergyChem 2019, 1, 100001.
[6]
Grochala, W.; Edwards, P. P. Chem. Rev. 2004, 104, 1283.
[7]
Schlapbach, L.; Züttel, A. Nature 2001, 414, 353.
[8]
Chen, P.; Xiong, Z.; Luo, J.; Lin, J.; Tan, K. L. Nature 2002, 420, 302.
[9]
Li, X. R.; Yang, X. C.; Xue, H. G.; Pang, H.; Xu, Q. EnergyChem 2020, 2, 100027.
[10]
Li, W. H.; Deng, W. H.; Wang, G-E.; Xu, G. EnergyChem 2020, 2, 100029.
[11]
Zhang, X. T.; Chen, J. C.; Zhu, L.; Hao, S.; Jiang, D. M.; Xia, L. S. Appl. Chem. Ind. 2018, 47, 139. (in Chinese)
[11]
(张晓腾, 陈俊畅, 朱林, 郝帅, 蒋冬梅, 夏良树, 应用化工, 2018, 47, 139.)
[12]
Xue, S. F.; Li, Y. J.; Zheng, F. H.; Bian, X.; Wu, W. Y.; Yang, C. H. Rare Metals 2021, 40, 31.
[13]
Cheng, Y.; Wu, X.; Xu, H. Sustain. Energy Fuels 2019, 3, 343.
[14]
Zhan, J. J.; Chen, Z. H. Mater. Rep. 2007, 62, 66. (in Chinese)
[14]
(湛建阶, 陈朝辉, 材料导报, 2007, 62, 66.)
[15]
Cho, S. J.; Lee, J.; Lee, Y. S.; Kim, D. P. Catal. Lett. 2006, 109, 181.
[16]
Jang, Y. B.; Kim, T. H.; Sun, M. H.; Lee, J.; Cho, S. J. Catal. Today 2009, 146, 196.
[17]
Singh, S. K.; Zhang, X.-B.; Xu, Q. J. Am. Chem. Soc. 2009, 131, 9894.
[18]
He, L.; Huang, Y.; Wang, A.; Wang, X.; Chen, X.; Delgado, J. J.; Zhang, T. Angew. Chem. Int. Ed. 2012, 51, 6191.
[19]
He, L.; Liang, B.; Li, L.; Yang, X.; Huang, Y.; Wang, A.; Wang, X.; Zhang, T. ACS Catal. 2015, 5, 1623.
[20]
Kang, W.; Varma, A. Appl. Catal. B-Environ. 2018, 220, 409.
[21]
Yao, Q. L.; Lu, Z. H.; Yang, K. K. Sci. Rep. 2015, 5, 15186.
[22]
Yao, Q.; Shi, W.; Feng, G.; Lu, Z.-H.; Zhang, X.; Tao, D.; Kong, D.; Chen, X. J. Power Sources 2014, 257, 293.
[23]
Huang, M.; Yao, Q.; Feng, G.; Zou, H.; Lu, Z. H. Inorg. Chem. 2020, 59, 5781.
[24]
Pan, X. L.; Fan, Z. L.; Chen, W.; Ding, Y. J.; Luo, H. Y.; Bao, X. H. Nature Mater. 2007, 6, 507.
[25]
Wang, H.; Wu, L.; Jia, A.; Li, X.; Shi, Z.; Duan, M.; Wang, Y. Chem. Eng. J. 2018, 332, 637.
[26]
Zhang, S.; Yao, Q.; Li, Q.; Feng, G.; Lu, Z. H. Energy Technol. 2019, 7, 1800533.
[27]
He, L.; Huang, Y.; Wang, A.; Wang, X.; Zhang, T. AICHE J. 2013, 59, 4297.
[28]
Wang, H.; Wu, L.; Wang, Y.; Li, X.; Wang, Y. Catal. Commun. 2017, 100, 33.
[29]
Kim, Y.; Kwon, K. Y. Bull. Korean Chem. Soc. 2019, 40, 1167.
[30]
Wang, Z. L.; Yan, J. M.; Ping, Y.; Wang, H. L.; Zheng, W. T.; Jiang, Q. Angew. Chem. Int. Ed. 2013, 52, 4406.
[31]
Lu, Z.-H.; Yao, Q.; Zhang, Z.; Yang, Y.; Chen, X. J. Nanomater. 2014, 2014, 1.
[32]
Kang, Y.; Xue, Q.; Peng, R.; Jin, P.; Zeng, J.; Jiang, J.; Chen, Y. NPG Asia Mater. 2017, 9, 407.
[33]
Liu, M.; Zheng, Y.; Xie, S.; Li, N.; Lu, N.; Wang, J.; Kim, M. J.; Guo, L.; Xia, Y. Phys. Chem. Chem. Phys. 2013, 15, 11822.
[34]
Singh, S. K.; Xu, Q. J. Am. Chem. Soc. 2009, 131, 18032.
[35]
Singh, A. K.; Yadav, M.; Aranishi, K.; Xu, Q. Int. J. Hydrogen Energy 2012, 37, 18915.
[36]
Zhong, D.-C.; Mao, Y.-L.; Tan, X.; Zhong, P.; Liu, L.-X. Int. J. Hydrogen Energy 2016, 41, 6362.
[37]
Zhang, Z. J.; Wang, Y. Q.; Chen, X. S.; Lu, Z. H. J. Power Sources 2015, 291, 14.
[38]
Wang, J.; Zhang, X.-B.; Wang, Z.-L.; Wang, L.-M.; Zhang, Y. Energy Environ. Sci. 2012, 5, 6885.
[39]
Hou, T.; Luo, Q.; Li, Q. Nat. Commun. 2020, 11, 4251.
[40]
Chen, S. Nanoscale 2018, 10, 20043.
[41]
Naguib, M.; Come, J.; Dyatkin, B.; Presser, V.; Taberna, P.-L.; Simon, P.; Barsoum, M. W.; Gogotsi, Y. Electrochem. Commun. 2012, 16, 61.
[42]
Kang, K. M. ACS Appl. Mater. Inter. 2017, 9, 44687.
[43]
Kim, S. J. ACS Nano 2018, 12, 986.
[44]
Cao, S.; Shen, B.; Tong, T.; Fu, J.; Yu, J. Adv. Funct. Mater 2018, 28, 1800136.
[45]
Liu, T.; Wang, Q.; Yuan, J.; Zhao, X.; Gao, G. ChemCatChem 2018, 10, 2200.
[46]
Yin, B.; Wang, Q. T.; Liu, T.; Gao, G. H. New J. Chem. 2018, 42, 20001.
[47]
Zhang, Z.; Lu, Z.-H.; Tan, H.; Chen, X.; Yao, Q. J. Mater. Chem. A 2015, 3, 23520.
[48]
Chen, J.; Yao, Q.; Zhu, J.; Chen, X.; Lu, Z.-H. Int. J. Hydrogen Energy 2016, 41, 3946.
[49]
Singh, A. K.; Xu, Q. ChemCatChem 2013, 5, 652.
[50]
Yao, Q.; Lu, Z. H.; Hu, Y. J.; Chen, X. S. RSC Adv. 2016, 6, 89450.
[51]
Hu, Y.; Wang, Y.; Lu, ZH.; Chen, X.; Xiong, L. Appl. Surf. Sci. 2015, 341, 185.
[52]
Yoo, J. B.; Kim, H. S.; Kang, S. H.; Lee, B.; Hur, N. H. J. Mater. Chem. A 2014, 2, 18929.
[53]
Gu, X.; Lu, Z. H.; Xu, Q. Chem. Commun. 2010, 46, 7400.
[54]
Li, X. G.; Zhang, C. L.; Luo, M. H.; Yao, Q. L.; Lu, Z. H. Inorg. Chem. Front. 2020, 7, 1298.
[55]
Xia, B.; Cao, N.; Dai, H.; Su, J.; Wu, X.; Luo, W.; Cheng, G. ChemCatChem 2014, 6, 2549.
[56]
Xia, B. Q.; Chen, K.; Luo, W.; Cheng, G. Z. Nano Res. 2015, 8, 3472.
[57]
Zhao, P.; Cao, N.; Luo, W.; Cheng, G. J. Mater. Chem. A 2015, 3, 12468.
[58]
Yang, K.; Yang, K. K.; Zhang, S. L.; Luo, Y.; Yao, Q. L.; Lu, Z. H. J. Alloys Compd. 2018, 732, 363.
[59]
Zhang, Z.; Zhang, S.; Yao, Q.; Feng, G.; Zhu, M.; Lu, Z.-H. Inorg. Chem. Front. 2018, 5, 370.
[60]
Singh, S. K.; Xu, Q. Inorg. Chem. 2010, 49, 6148.
[61]
Singh, S. K.; Lu, Z.-H.; Xu, Q. Eur. J. Inorg. Chem. 2011, 2011, 2232.
[62]
Singh, A. K.; Xu, Q. Int. J. Hydrogen Energy 2014, 39, 9128.
[63]
Oliaee, S. N.; Zhang, C.; Hwang, S. Y.; Cheung, H. M.; Peng, Z. J. Phys. Chem. C 2016, 120, 9764.
[64]
He, L.; Huang, Y.; Wang, A.; Liu, Y.; Liu, X.; Chen, X.; Delgado, J. J.; Wang, X.; Zhang, T. J. Catal. 2013, 298, 1.
[65]
Jiang, Y.; Kang, Q.; Zhang, J.; Dai, H.-B.; Wang, P. J. Power Sources 2015, 273, 554.
[66]
Jiang, Y. Y.; Dai, H. B.; Zhong, Y. J.; Chen, D. M.; Wang, P. Chem. Eur. J. 2015, 21, 15439.
[67]
Wang, H. L.; Yan, J. M.; Wang, Z. L.; O, S. I.; Jiang, Q. J. Mater. Chem. A 2013, 1, 14957.
[68]
Dai, H.; Qiu, Y.-P.; Dai, H.-B.; Wang, P. ACS Sustain. Chem. Eng. 2018, 6, 9876.
[69]
Zhong, Y.-J.; Dai, H.-B.; Jiang, Y.-Y.; Chen, D.-M.; Zhu, M.; Sun, L.-X.; Wang, P. J. Power Sources 2015, 300, 294.
[70]
Song, F. Z.; Zhu, Q. L.; Yang, X. C.; Zhan, W.; Pachfule, P.; Nobuko, Tsumori.; Xu, Q. Adv. Energy Mater. 2018, 8, 1701416.
[71]
Qiao, M. F.; Wang, Y.; Li, L. Rare Metals 2020, 39, 824.
[72]
Wang, D. C.; Lei, Y.; Jiao, W.; Liu, Y. F.; Mu, C. H.; Jian, X. Rare Metals 2021, 40, 3.
[73]
Song, F. Z.; Yang, X.; Xu, Q. Small Methods 2020, 4, 1900707.
[74]
Song, F. Z.; Zhu, Q. L.; Nobuko, T.; Xu, Q. ACS Catal. 2015, 5, 5141.
[75]
Song, F. Z.; Zhu, Q.-L.; Xu, Q. J. Mater. Chem. A 2015, 3, 23090.
[76]
Chen, J.; Lu, Z.-H.; Huang, W.; Kang, Z.; Chen, X. J. Alloy. Compd. 2017, 695, 3036.
[77]
Du, Y.; Su, J.; Luo, W.; Cheng, G. ACS Appl. Mater. Inter. 2015, 7, 1031.
[78]
Du, X.; Du, C.; Cai, P.; Luo, W.; Cheng, G. ChemCatChem 2016, 8, 1410.
[79]
Singh, A.; Xu, Q. ChemCatChem 2013, 2013, 3000.
[80]
Sun, J.-K.; Xu, Q. ChemCatChem 2015, 7, 526.
[81]
Zhang, Z.; Zhang, S.; Yao, Q.; Chen, X.; Lu, Z. H. Inorg. Chem. 2017, 56, 11938.
[82]
Zou, H. T.; Zhang, S. L.; Hong, X. L.; Yao, Q. L.; Luo, Y.; Lu, Z. H. J. Alloys Compd. 2020, 835, 155426.
[83]
Cao, N.; Su, J.; Luo, W.; Cheng, G. Int. J. Hydrogen Energy 2014, 39, 9726.
[84]
Cao, N.; Yang, L.; Dai, H.; Liu, T.; Su, J.; Wu, X.; Luo, W.; Cheng, G. Inorg. Chem. 2014, 53, 10122.
[85]
Wen, L.; Du, X.; Su, J.; Luo, W.; Cai, P.; Cheng, G. Dalton Trans. 2015, 44, 6212.
[86]
Luo, Y.; Yang, Q.; Nie, W.; Yao, Q.; Zhang, Z.; Lu, Z. H. ACS Appl. Mater. Inter. 2020, 12, 8082.
[87]
Xia, B.; Liu, T.; Luo, W.; Cheng, G. J. Mater. Chem. A 2016, 4, 5616.
[88]
O, S.-I.; Yan, J.-M.; Wang, H.-L.; Wang, Z.-L.; Jiang, Q. J. Power Sources 2014, 262, 386.
[89]
Guo, F.; Zou, H.; Yao, Q.; Huang, B.; Lu, Z.-H. Renew. Energy 2020, 155, 1293.
[90]
Singh, S. K.; Xu, Q. Chem. Commun. 2010, 46, 6545.
[91]
Qiu, Y. P.; Yin, H.; Dai, H.; Gan, L. Y.; Dai, H. B.; Wang, P. Chem. Eur. J. 2018, 24, 4902.
[92]
He, L.; Huang, Y.; Liu, X. Y.; Li, L.; Wang, A.; Wang, X.; Mou, C.-Y.; Zhang, T. Appl. Catal. B-Environ. 2014, 147, 779.
[93]
Hong, X.; Yao, Q.; Huang, M.; Du, H.; Lu, Z.-H. Inorg. Chem. Front. 2019, 6, 2271.
[94]
Zhao, P.; Cao, N.; Su, J.; Luo, W.; Cheng, G. ACS Sustain. Chem. Eng. 2015, 3, 1086.
[95]
Singh, S. K.; Iizuka, Y.; Xu, Q. Int. J. Hydrogen Energy 2011, 36, 11794.
[96]
Bhattacharjee, D.; Mandal, K.; Dasgupta, S. J. Power Sources 2015, 287, 96.
[97]
Bhattacharjee, D.; Dasgupta, S. J. Mater. Chem. A 2015, 3, 24371.
[98]
Song-Il, O.; Yan, J.-M.; Wang, H.-L.; Wang, Z.-L.; Jiang, Q. Int. J. Hydrogen Energy 2014, 39, 3755.
[99]
Wang, K.; Yao, Q.; Qing, S.; Lu, Z.-H. J. Mater. Chem. A 2019, 7, 9903.
[100]
Firdous, N.; Janjua, N. K.; Qazi, I.; Sarwar Wattoo, M. H.. Int. J. Hydrogen Energy 2016, 41, 984.
[101]
Du, X.; Cai, P.; Luo, W.; Cheng, G. Int. J. Hydrogen Energy 2017, 42, 6137.
[102]
luo, W.; Xiao, Q.-D.; Tan, S.; Cai, P.; Cheng, G. J. Mater. Chem. A 2016, 4, 14572.
[103]
Liu, T.; Yu, J.; Bie, H.; Hao, Z. J. Alloy. Compd. 2017, 690, 783.
[104]
Wang, J.; Li, W.; Wen, Y.; Gu, L.; Zhang, Y. Adv. Energy Mater. 2015, 5, 1401879.
[105]
Yao, Q.; He, M.; Hong, X.; Chen, X.; Feng, G.; Lu, Z.-H. Int. J. Hydrogen Energy 2019, 44, 28430.
[106]
Yao, Q.; He, M.; Hong, X.; Zhang, X.; Lu, Z.-H. Inorg. Chem. Front. 2019, 6, 1546.
[107]
Yang, K. K.; Yao, Q. L.; Huang, W.; Chen, X. S.; Lu, Z. H. Int. J. Hydrogen Energy 2017, 42, 6840.
[108]
Yao, Q.; Ding, Y.; Lu, Z. H. Inorg. Chem. Front. 2020, 7, 3837.
[109]
Yao, Q.; Lu, Z.-H.; Zhang, R.; Zhang, S.; Chen, X.; Jiang, H.-L. J. Mater. Chem. A 2018, 6, 4386.
[110]
Yao, Q.; Lu, Z. H.; Huang, W.; Chen, X.; Zhu, J. J. Mater. Chem. A 2016, 4, 8579.
[111]
Singh, S. K.; Singh, A. K.; Aranishi, K.; Xu, Q. J. Am. Chem. Soc. 2011, 133, 19638.
[112]
Gao, W.; Li, C.; Chen, H.; Wu, M.; He, S.; Wei, M.; Evans, D. G.; Duan, X. Green Chem. 2014, 16, 1560.
[113]
Wu, D.; Wen, M.; Gu, C.; Wu, Q. ACS Appl. Mater. Inter. 2017, 9, 16103.
[114]
Men, Y.; Du, X.; Cheng, G.; Luo, W. Int. J. Hydrogen Energy 2017, 42, 27165.
[115]
Zou, H.; Yao, Q.; Huang, M.; Zhu, M.; Zhang, F.; Lu, Z.-H. Sustain. Energy Fuels 2019, 3, 3071.
[116]
Chen, J.; Zou, H.; Yao, Q.; Luo, M.; Li, X.; Lu, Z.-H. Appl. Surf. Sci. 2020, 501, 144247.
[117]
Yao, Q.; Lu, Z. H.; Zhang, Z.; Chen, X.; Lan, Y. Sci. Rep. 2014, 4, 7597.
[118]
Manukyan, K. V.; Cross, A.; Rouvimov, S.; Miller, J.; Mukasyan, A. S.; Wolf, E. E. Appl. Catal. A-Gen. 2014, 476, 47.
[119]
Wang, J.; Li, Y.; Zhang, Y. Adv. Funct. Mater. 2014, 24, 7073.
[120]
Wang, H.-L.; Yan, J.-M.; Li, S.-J.; Zhang, X.-W.; Jiang, Q. J. Mater. Chem. A 2015, 3, 121.
[121]
Yen, H.; Seo, Y.; Kaliaguine, S.; Kleitz, F. ACS Catal. 2015, 5, 5505.
[122]
Kang, W.; Guo, H.; Varma, A. Appl. Catal. B-Environ. 2019, 249, 54.
[123]
Ding, L.; Shu, Y.; Wang, A.; Zheng, M.; Li, L.; Wang, X.; Zhang, T. Appl. Catal. A-Gen. 2010, 385, 232.
[124]
Wu, D.; Wen, M.; Lin, X.; Wu, Q.; Gu, C.; Chen, H. J. Mater. Chem. A 2016, 4, 6595.
[125]
Cheng, H.; Huang, Y.; Wang, A.; Wang, X.; Zhang, T. Top. Catal. 2009, 52, 1535.
[126]
Zhang, J.; Kang, Q.; Yang, Z.; Dai, H.-B.; Zhuang, D.; Wang, P. J. Mater. Chem. A 2013, 1, 11623.
[127]
Qiu, Y.-P.; Cao, G.-X.; Wen, H.; Shi, Q.; Dai, H.; Wang, P. Int. J. Hydrogen Energy 2019, 44, 15110.
[128]
Liu, Y.; Zhang, H.; Ma, C.; Sun, N. Catalysts 2019, 9, 596.
[129]
Zhao, B.; Song, J.; Ran, R.; Shao, Z. Int. J. Hydrogen Energy 2012, 37, 1133.
[130]
Song, J.; Ran, R.; Shao, Z. Int. J. Hydrogen Energy 2010, 35, 7919.
[131]
Oosawa, Y. J. Chem. Soc. Faraday Trans 1984, 80, 1507.
[132]
Abe, T.; Taira, N.; Tanno, Y.; Kikuchi, Y.; Nagai, K. Chem. Commun. 2014, 50, 1950.
[133]
Jana, M. K.; Gupta, U.; Rao, C. N. R. Dalton Trans. 2016, 45, 15137.
[134]
Zhang, P.-X.; Wang, Y.-G.; Huang, Y.-Q.; Zhang, T.; Wu, G.-S.; Li, J. Catal. Today 2011, 165, 80.
[135]
Block, J.; Schulz-Ekloff, G. J. Catal. 1973, 30, 327.
[136]
He, L.; Huang, Y. Q.; Wang, A. Q.; Wang, X. D.; Zhang, T. Chem. Ind. Eng. Prog. 2014, 33, 2956. (in Chinese)
[136]
(贺雷, 黄延强, 王爱琴, 王晓东, 张涛, 化工进展, 2014, 33, 2956.)
[137]
Wood, B. J.; Wise, H. J. Catal. 1975, 39, 471.
[138]
Falconer, J. L.; Wise, H. J. Catal. 1976, 43, 220.
[139]
Prasad, J.; Gland, J. L. Langmuir 1991, 7, 722.
[140]
Alberas, D. J.; Kiss, J.; Liu, Z. M.; White, J. M. Surf. Sci. 1992, 278, 51.
[141]
Ranney, J. T.; Franz, A. J.; Gland, J. L. Langmuir 1997, 13, 2731.
[142]
Zhang, D. X.; Yin, H.; Zhong, H. F.; Gan, L. Y.; Wang, P. Int. J. Hydrogen Energy 2020, 45, 16114.
[143]
Dai, H. Ph.D. Dissertation, South China University of Technology, Guangzhou, 2019. (in Chinese)
[143]
(戴豪, 博士论文, 华南理工大学, 广州, 2019.)
[144]
Maurel, R.; Menezo, J. C. J. Catal. 1978, 51, 293.
[145]
Lu, X. Y.; Francis, S.; Motta, D.; Dimitratos, N.; Roldan, A. Phys. Chem. Chem. Phys. 2020, 22, 3883.
[146]
Deng, Z.; Lu, X.; Wen, Z.; Wei, S.; Liu, Y.; Fu, D.; Zhao, L.; Guo, W. Phys. Chem. Chem. Phys. 2013, 15, 16172.
[147]
He, Y. B.; Jia, J. F.; Wu, H. S. Appl. Surf. Sci. 2015, 327, 462.
[148]
McKay, H. L.; Jenkins, S. J.; Wales, D. J. J. Phys. Chem. C 2011, 115, 17812.
[149]
Agusta, M. K.; David, M.; Nakanishi, H.; Kasai, H. Surf. Sci. 2010, 604, 245.
[150]
Yin, H.; Qiu, Y. P.; Dai, H.; Gan, L. Y.; Dai, H. B.; Wang, P. J. Phys. Chem. C 2018, 122, 5443.
[151]
Daff, T. D.; de Leeuw, N. H. J. Mater. Chem. 2012, 22, 23210.
[152]
He, Y. B. Ph.D. Dissertation, Shanxi Normal University, Linfen, 2015. (in Chinese)
[152]
(贺艳斌, 博士论文, 山西师范大学, 临汾, 2015.)
[153]
Singh, S. K.; Xu, Q. Catal. Sci. Technol. 2013, 3, 1889.
[154]
Zhang, Z. J.; Lu, Z. H.; Chen, X. S. ACS Sustain. Chem. Eng. 2015, 3, 1255.
[155]
Chen, J. M.; Lu, Z. H.; Yao, Q. L. J. Mater. Chem. A 2018, 6, 20746.
[156]
Yao, L. H.; Li, X. G.; Peng, W. F.; Yao, Q. L.; Xia, J. H.; Lu, Z. H. Inorg. Chem. Front. 2021, 8, 1056.
[157]
Yao, Q. L.; Yang, K. K.; Nie, W. D.; Li, Y. X.; Lu, Z. H. Renewable Energy 2020, 147, 2024.
[158]
He, L.; Liang, B.; Huang, Y.; Zhang, T. Natl. Sci. Rev. 2017, 5, 356.
[159]
Li, L. C.; Lan, Y. J. Ind. Catal. 1994, 1, 3. (in Chinese)
[159]
(李令成, 蓝蕴基, 工业催化, 1994, 1, 3.)
[160]
Zou, H. T.; Guo, F.; Luo, M. H.; Yao, Q. L.; Lu, Z. H. Int. J. Hydrogen Energy 2020, 45, 11641.
[161]
Li, S. J.; Wang, H. L.; Zhang, X. B.; Yan, J. M.; Jiang, Q. Adv. Energy. Mater 2018, 8, 1800625.
[162]
Zhang, S.; Yao, Q.; Lu, Z. Chem. Ind. Eng. Prog. 2017, 29, 426. (in Chinese)
[162]
(张世亮, 姚淇露, 卢章辉, 化学进展, 2017, 29, 426.)
[163]
Wang, W.; Hong, X.; Yao, Q.; Lu, Z.-H. J. Mater. Chem. A 2020, 8, 13694.
[164]
Guo, J. Q.; Du, Y. P.; Zhang, H. B. Acta Chim. Sinica 2020, 78, 625. (in Chinese)
[164]
(郭金秋, 杜亚平, 张洪波, 化学学报, 2020, 78, 625.)
[165]
Nie, W. D.; Yang, Q. F.; Lu, Z. H. J. Jiangxi Normal Univ. (Natural Sci.), 2019, 43, 416. (in Chinese)
[165]
(聂文丹, 杨齐凤, 卢章辉, 江西师范大学学报(自然科学版), 2019, 43, 416.)
[166]
Huang, G. J.; Chen, Z. G.; Li, M. D.; Yang, B.; Xin, M. L.; Li, S. P.; Yin, Z. J. Acta Chim. Sinica 2016, 74, 789. (in Chinese)
[166]
(黄国家, 陈志刚, 李茂东, 杨波, 辛明亮, 李仕平, 尹宗杰, 化学学报, 2016, 74, 789.)
[167]
Sun, J.; Liang, B. L.; Huang, Y. Q.; Wang, X. D. Catal. Today 2016, 274, 123.
[168]
Zhang, J. W.; Li, P.; Zhang, X. N.; Ma, X. J.; Wang, B. Acta Chim. Sinica 2020, 78, 597. (in Chinese)
[168]
(张晋维, 李平, 张馨凝, 马小杰, 王博, 化学学报, 2020, 78, 597.)
[169]
Fu, Q.; Yang, P.; Wang, J.; Wang, H.; Yang, L.; Zhao, X. J. Mater. Chem. A 2018, 6, 11370.
[170]
Zhao, M.; Xu, L.; Vara, M.; Elnabawy, A. O.; Gilroy, K. D.; Hood, Z. D.; Zhou, S.; Figueroa-Cosme, L.; Chi, M.; Mavrikakis, M.; Xia, Y. ACS Catal. 2018, 8, 6948.
[171]
Zhang, Z.; Luo, Y.; Liu, S.; Yao, Q.; Qing, S.; Lu, Z. H. J. Mater. Chem. A 2019, 7, 21438.
[172]
Wang, W.; Lu, Z. H.; Luo, Y.; Zou, A.; Yao, Q. L.; Chen, X. S. ChemCatChem 2018, 10, 1620.
[173]
Nie, W. D.; Luo, Y.; Yang, Q. F.; Feng, G.; Yao, Q. L.; Lu, Z. H. Inorg. Chem. Front. 2020, 7, 709.
[174]
Yao, Q. L.; Lu, Z. H.; Wang, Y.; Chen, X.; Feng, G. J. Phys. Chem. C 2015, 119, 14167.
[175]
Chen, J. M.; Lu, Z. H.; Wang, Y.; Chen, X.; Zhang, L. Int. J. Hydrogen Energy 2015, 40, 4777.
[176]
Yang, Y. W.; Lu, Z. H.; Hu, Y. J.; Zhang, Z. J.; Shi, W. M.; Chen, X. RSC Adv. 2014, 4, 13749.
[177]
Yao, Q. L.; Lu, Z. H.; Jia, Y. S.; Chen, X.; Liu, X. Int. J. Hydrogen Energy 2015, 40, 2207.
[178]
Lu, Z. H.; Li, J. P.; Zhu, A. L.; Yao, Q. L.; Huang, W.; Zhou, R. Y.; Zhou, R. F.; Chen, X. Int. J. Hydrogen Energy 2013, 38, 5330.
[179]
Lu, Z. H.; Li, J. P.; Feng, G.; Yao, Q. L.; Zhang, F.; Zhou, R. Y.; Tao, D. J.; Chen, X.; Yu, Z. Q. Int. J. Hydrogen Energy 2014, 39, 13389.
[180]
Yao, Q. L.; Lu, Z. H.; Yang, Y. Nano Res. 2018, 11, 4412.
[181]
Yao, Q.; Yang, K.; Hong, X.; Chen, X.; Lu, Z.-H. Catal. Sci. Technol. 2018, 8, 870.
[182]
Dong, Y. L.; Zhao, J. Q. Petrochem. Technol. 2018, 47, 883. (in Chinese)
[182]
(董永利, 赵继全, 石油化工, 2018, 47, 883.)
文章导航

/