研究论文

亚微米去顶角八面体LiNi0.08Mn1.92O4正极材料制备及高温电化学性能

  • 梁其梅 ,
  • 郭昱娇 ,
  • 郭俊明 ,
  • 向明武 ,
  • 刘晓芳 ,
  • 白玮 ,
  • 宁平
展开
  • a 云南民族大学 生物基材料绿色制备技术国家地方联合工程研究中心 昆明 650500
    b 昆明理工大学 环境科学与工程学院 昆明 650093

收稿日期: 2021-07-13

  网络出版日期: 2021-11-03

基金资助

国家自然科学基金(51972282); 国家自然科学基金(U1602273)

Preparation and High Temperature Electrochemical Performance of LiNi0.08Mn1.92O4 Cathode Material of Submicron Truncated Octahedron

  • Qimei Liang ,
  • Yujiao Guo ,
  • Junming Guo ,
  • Mingwu Xiang ,
  • Xiaofang Liu ,
  • Wei Bai ,
  • Ping Ning
Expand
  • a National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China
    b Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China

Received date: 2021-07-13

  Online published: 2021-11-03

Supported by

National Natural Science Foundation of China(51972282); National Natural Science Foundation of China(U1602273)

摘要

采用低温固相燃烧法快速制备了一种具有{111}、{110}和{100}晶面的去顶角八面体LiNi0.08Mn1.92O4 (LNMO)正极材料, 其高暴露{111}晶面可以减少充放电过程中Mn的溶解, 面积相对较小的{110}和{100}晶面可增加Li+快速扩散的通道. 测试结果表明, 所合成的LNMO具有LiMn2O4特有的立方晶系结构, 其颗粒尺寸为亚微米级. LNMO的高温电化学性能优异, 在55 ℃, 1和5 C的首次放电比容量分别为109.9和98.0 mAh/g, 分别循环300次后容量保持率为75.8%和80.5%; 即使在55 ℃, 10和15 C下分别循环1000次后仍具有48.4%和49.4%的容量保持率, 而未掺杂的LiMn2O4于15 C循环1000次后容量损失高达98%. LNMO在55 ℃有较高的Li+扩散系数(D=3.86×10-15 cm2/s)和较小的电荷转移阻抗(循环前、后Rct=158.0和279.8 Ω)以及较低的表观活化能(Ea=17.63 kJ/mol), 说明Ni掺杂能够提高Li+在尖晶石型LiMn2O4内的扩散速率及减小锂离子在脱嵌过程中的能垒, 从而提高锂离子的扩散速率和倍率性能. 对LNMO于55 ℃循环1000次后的极片进行X射线衍射(XRD)分析, 发现LNMO电极材料的晶体结构基本保持不变, 表明Ni掺杂提高了锰酸锂材料在55 ℃长循环过程中的晶体结构稳定性, 有效抑制了Jahn-Teller效应及Mn的溶解, 显著提升了其高温电化学性能. 本工作为尖晶石LiMn2O4电极材料在高温方面的应用提供了借鉴.

本文引用格式

梁其梅 , 郭昱娇 , 郭俊明 , 向明武 , 刘晓芳 , 白玮 , 宁平 . 亚微米去顶角八面体LiNi0.08Mn1.92O4正极材料制备及高温电化学性能[J]. 化学学报, 2021 , 79(12) : 1526 -1533 . DOI: 10.6023/A21070324

Abstract

The truncated octahedral LiNi0.08Mn1.92O4 (LNMO) cathode material with dominant {111}, truncated {110} and {100} crystal planes was prepared by a low temperature solid-state combustion method. The dominant {111} crystal plane of the unique truncated octahedron can form firm solid electrolyte interphase (SEI) layer and alleviate the manganese dissolution during the discharge-charge process, and a small part of {110} and {100} crystal planes can increase the rapid diffusion channels of Li+ ions. The field emission scanning electron microscope (SEM) and X-ray diffractometer (XRD) results show that LNMO has cubic spinel structure with submicron particle size. The electrochemical performances of LNMO are also outstanding at high temperature of 55 ℃, the initial discharge capacities are 109.9 and 98.0 mAh/g with capacity retentions of 75.8% and 80.5% after 300 cycles at 1 and 5 C, respectively. Even at high current rates of 10 and 15 C, the capacity retentions of 48.4% and 49.4% have been maintained after 1000 cycles, while the capacity loss of undoped LiMn2O4 is as high as 98% after 1000 cycles at 15 C. Moreover, the dynamic performance tests show that LNMO owns larger Li+ diffusion coefficient (D=3.86×10-15 cm2/s), smaller charge transfer resistances (before cycle and after cycles, the Rct=158.0 and 279.8 Ω) and lower apparent activation energy (Ea=17.63 kJ/mol) than LiMn2O4 (LMO), demostrate its enhanced Li+ transport dynamic. The XRD tests of two electrode slices after 1000 cycles at 10 C show that the crystal structure of LNMO electrode material is almost unchanged, which indicated that the Ni doping and the truncated octahedral structure of particles could improve the structural stability of material, effectively inhibit the Jahn-Teller effect and Mn dissolution, remarkably improve its high temperature electrochemical performance. Therefore, this work provides a reference for the application of spinel LiMn2O4 electrode material at high temperature.

参考文献

[1]
Chen, S.; He, T.; Su, Y.-F.; Lu, Y.; Bao, L.-L.; Chen, L.; Zhang, Q.-Y.; Wang, J.; Chen, R.-J.; Wu, F. ACS Appl. Mater. Interfaces 2017, 9, 29732.
[2]
Liu, J.-D.; Zhang, Y.-D.; Liu, J.-X.; Li, J.-H.; Qiu, X.-G.; Cheng, F.-Y. Acta Chim. Sinica 2020, 78, 1426 (in Chinese).
[2]
( 刘九鼎, 张宇栋, 刘俊祥, 李金翰, 邱晓光, 程方益, 化学学报, 2020, 78, 1426.)
[3]
Zhan, C.; Wu, T.-P.; Lu, J.; Amine, K. Energy Environ. Sci. 2018, 11, 243.
[4]
Duan, Y.-Z.; Zhu, J.-Y.; Guo, J.-M.; Xiang, M.-W.; Liu, X.-F.; Bai, H.-L.; Su, C.-W. Chem. J. Chinese Universities 2019, 40, 2574 (in Chinese).
[4]
( 段玉珍, 朱金玉, 郭俊明, 向明武, 刘晓芳, 白红丽, 苏长伟, 高等学校化学学报, 2019, 40, 2574.)
[5]
Lu, D.; Zheng, C.-M.; Chen, Y.-F.; Li, Y.-J.; Zhang, H.-M. Chem. J. Chinese Universities 2020, 41, 16844 (in Chinese).
[5]
( 陆地, 郑春满, 陈宇方, 李宇杰, 张红梅, 高等学校化学学报, 2020, 41, 16844.)
[6]
Luo, X.-Y.; Xiang, M.-W.; Li, Y.; Guo, J.-M.; Liu, X.-F.; Bai, H.-L.; Bai, W.; Su, C.-W. Vacuum 2020, 179, 109505.
[7]
Song, H.; Zhao, Y.; Niu, Y.; Hou, H. Solid State Ionics 2019, 331, 49.
[8]
Ni, J.-F.; Zhou, H.-H.; Chen, J.-T.; Su, G.-Y. Prog. Chem. 2004, 16, 335 (in Chinese).
[8]
( 倪江锋, 周恒辉, 陈继涛, 苏光耀, 化学进展, 2004, 16, 335.)
[9]
Iqbal, A.; Iqbal, Y.; Khan, A.-M.; Ahmed, S. Ionics 2017, 23, 1995.
[10]
Liu, H.-Q.; Tian, R.-Y.; Jiang, Y.; Tan, X.-H.; Chen, J.-K.; Zhang, L.-N.; Guo, Y.-J.; Wang, H.-F.; Sun, L.-F.; Chu, W.-G. Electrochim. Acta 2015, 180, 138.
[11]
Yang, S.-Q.; Zhang, T.-R.; Tao, Z.-L.; Chen, J. Acta Chim. Sinica 2013, 71, 1029 (in Chinese).
[11]
( 杨思七, 张天然, 陶占良, 陈军, 化学学报, 2013, 71, 1029.)
[12]
Liu, Q.; Liang, Q.-M.; Guo, J.-M.; Xiang, M.-W.; Bai, W.; Bai, H.-L.; Liu, X.-F. Ceram. Int. 2021, 47, 2441.
[13]
Liu, W.-H.; Xu, H.-H.; Zhou, Q.-H.; Dai, Y.-W.; Hu, W.; Li, H.-L. J. Electron. Mater. 2020, 49, 5523.
[14]
Jiang, J.-B.; Liang, L.-W.; Li, D.; Xiao, J.; Peng, Z.-D.; Du, K.; Cao, Y.-B.; Hu, G.-R.; Jiang, F. J. Nanosci. Nanotechnol. 2017, 17, 9182.
[15]
Bai, H.-L.; Xu, W.-Q.; Guo, J.-M.; Su, C.-W.; Xiang, M.-W.; Liu, X.-F.; Wang, R. J. Mater. Sci.-Mater. M. 2018, 29, 14668.
[16]
Raju, K.; Nkosi, F.-P.; Viswanathan, E.; Mathe, M.-K.; Damodaran, K.; Ozoemena, K.-I. Phys. Chem. Chem. Phys. 2016, 18, 13074.
[17]
Deepi, A.-S.; Srikesh, G.; Nesaraj, S.-A. Matéria 2021, 26, 1.
[18]
Ta, T.-A.; Nguyen, H.-S.; Nguyen, O.-T.-T.; Dang, C.-T.; Hoang, L.-A.; Pham, L.-D. Mater. Res. Express 2019, 6, 065505.
[19]
Wei, Q.-L.; Wang, X.-Y.; Wang, X.-Y.; Yang, X.-K.; Ju, B.-W.; Hu, B.-N.; Shu, H.-B.; Wen, W.-C.; Zhou, M.; Song, Y.-F.; Wu, H.; Hu, H. J. Mater. Chem. A 2013, 1, 4010.
[20]
Gu, X.; Li, X.-W.; Xu, L.-Q.; Xu, H.-Y.; Yang, J.; Qian, Y.-T. Int. J. Electrochem. Sci. 2012, 7, 2504.
[21]
Duan, Y.-Z.; Guo, J.-M.; Xiang, M.-W.; Zhu, J.-Y.; Su, C.-W.; Bai, H.-L.; Liu, X.-F.; Bai, W.; Wang, R. Solid State Ionics 2018, 326, 100.
[22]
Kunjuzwa, N.; Kebede, M.; Ozoemena, K.-I.; Mathe, M.-K. RSC Adv. 2016, 6, 111882.
[23]
Wang, F.-X.; Xiao, S.-Y.; Shi, Y.; Liu, L.-L.; Zhu, Y.-S.; Wu, Y.-P.; Wang, J.-Z.; Holze, R. Electrochim. Acta 2013, 93, 301.
[24]
Zhao, C.-H.; Kang, W.-P.; Wang, X.-X.; Zhao, S.-Q.; Shen, Q. Micro Nano Lett. 2012, 7, 558.
[25]
Benedek, R.; Thackeray, M.-M. J. Phys. Chem. C 2012, 116, 4050.
[26]
Kim, J.-S.; Kim, K. S.; Cho, W.; Shin, W.-H.; Kanno, R. Nano Lett. 2012, 12, 6358.
[27]
Huang, S.-S.; Wu, H.; Chen, P.-H.; Guo, Y.; Nie, B.; Chen, B.-J.; Liu, H.; Zhang, Y. J. Mater. Chem. A 2015, 3, 3633.
[28]
Zhou, S.-Y.; Mei, T.; Wang, X.-B.; Qian, Y.-T. Nanoscale 2018, 10, 17435.
[29]
Jiang, C.-H.; Tang, Z.-L.; Wang, S.-T.; Zhang, Z.-T. J. Power Sources 2017, 357, 144.
[30]
Wang, F.-X.; Xiao, S.-Y.; Shi, Y.; Liu, L.-L.; Zhu, Y.-S.; Wu, Y.-P.; Wang, J.-Z.; Holze, R. Electrochim. Acta 2013, 93, 301.
[31]
Wang, Q.-Q.; Zhang, Y.; Zhang, H.; Xu, Y.-L.; Dong, H.; Zhao, C.-J. J. Alloys Compd. 2017, 693, 474.
[32]
Zhu, C.-Y.; Liu, J.-X.; Yu, X.-H.; Zhang, Y.-J.; Dong, P.; Wang, X.; Zhang, Y.-N. Ceram Int. 2019, 45, 19351.
[33]
Cai, Y.-J.; Huang, Y.-D.; Wang, X.-C.; Jia, D.-Z.; Pang, W.-K.; Guo, Z.-P.; Du, Y.-P.; Tang, X.-C. J. Power Sources 2015, 278, 574.
[34]
Tabassam, L.; Nazir, T.; Manzoor, U.; Mehmood, S.; Hassan, M.-U.; Bhatti, A.-S. Mater. Res. Express 2019, 6, 115550.
[35]
Yu, Y.; Xiang, M.-W.; Guo, J.-M.; Su, C.-W.; Liu, X.-F.; Bai, H.-L.; Bai, W.; Duan, K.-J. J. Colloid Interf. Sci. 2019, 555, 64.
[36]
Huang, X.-H.; Li, G.-H.; Cao, B.-Q.; Wang, M.; Hao, C.-Y. J. Phys. Chem. C 2014, 113, 4381.
[37]
Chen, M.-F.; Chen, P.; Yang, F.; Song, H.-Y.; Liao, S.-J. Electrochim. Acta 2016, 206, 356.
[38]
Huang, Y.-D.; Jiang, R.-R.; Jia, D.-Z.; Guo, Z.-P. Mater. Lett. 2011, 65, 3486.
[39]
Eriksson, T.; Hjelm, A.-K.; Lindbergh, G.; Gustafsson, T. J. Electrochem. Soc. 2002, 149, A1164.
[40]
Xia, Y.; Wang, H.; Zhang, Q.; Nakamura, H.; Noguchi, H.; Yoshio, M. J. Power Sources 2007, 166, 485.
[41]
Yoshio, M.; Noguchi, H.; Wang, H.; Wang, X. J. Power Sources 2006, 154, 273.
[42]
Wu, Y.; Cao, C.-B.; Zhang, J.-T.; Wang, L.; Ma, X.-L.; Xu, X.-Y. ACS Appl. Mater. Interfaces 2016, 8, 19567.
[43]
Li, Y.-L.; Yu, D.-D.; Lin, S.; Sun, D.-F.; Lei, Z.-Q. Acta Chim. Sinica 2021, 79, 200 (in Chinese).
[43]
( 李燕丽, 于丹丹, 林森, 孙东飞, 雷自强, 化学学报, 2021, 79, 200.)
[44]
Rangarajan, S.-P.; Barsukov, Y.; Mukherjee, P.-P. J. Electrochem. Soc. 2019, 166, A2131.
文章导航

/