综述

功能碳基复合材料在锂硫电池正极中的应用

  • 刘汉鼎 ,
  • 贾国栋 ,
  • 朱胜 ,
  • 盛建 ,
  • 张则尧 ,
  • 李彦
展开
  • a北京大学深圳研究院 深圳 518057
    b北京分子科学国家研究中心 纳米器件物理与化学教育部重点实验室 稀土材料及应用国家重点实验室 北京大学化学与分子工程学院 北京 100871

刘汉鼎, 目前在北京大学化学与分子工程学院李彦教授课题组开展研究工作, 研究方向是碳纳米管及其衍生物的可控制备及在储能领域的应用研究.

李彦, 北京大学化学与分子工程学院教授, 主要从事碳纳米材料的研究, 在碳纳米管的可控生长、分离、表征和应用等方面取得了一系列重要研究成果. 2011年获得国家杰出青年基金资助, 2013年获聘教育部长江学者特聘教授, 以第一完成人获2017年度教育部自然科学一等奖.

*E-mail: ; Tel.: 010-62756773

收稿日期: 2021-08-14

  网络出版日期: 2021-11-12

基金资助

深圳市科技计划项目(JCYJ20170817113121505); 深圳市海外高层次人才创新创业专项资金(KQTD20180411143400981); 科技部国家科技重大专项(2016YFA0201904); 国家自然科学基金(21631002); 国家自然科学基金(52101209); 北京分子科学国家研究中心(BNLMS-CXTD-202001); 中国博士后面上基金项目(2020M682606)

Functionalized Carbon-Based Composite Materials for Cathode Application of Lithium-Sulfur Batteries

  • Handing Liu ,
  • Guodong Jia ,
  • Sheng Zhu ,
  • Jian Sheng ,
  • Zeyao Zhang ,
  • Yan Li
Expand
  • aPeking University Shenzhen Institute, Shenzhen 518057, China
    bBeijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China

Received date: 2021-08-14

  Online published: 2021-11-12

Supported by

Shenzhen Basic Research Project(JCYJ20170817113121505); Shenzhen KQTD Project(KQTD20180411143400981); National Science and Technology Major Project of the Ministry of Science and Technology of China(2016YFA0201904); National Natural Science Foundation of China(21631002); National Natural Science Foundation of China(52101209); Beijing National Laboratory for Molecular Sciences(BNLMS-CXTD-202001); China Postdoctoral Science Foundation(2020M682606)

摘要

碳基复合材料由于结构可变、形貌可调、成分可控, 能够展现出优异的理化特性, 在能源存储和转化领域具有极大的应用潜力. 其中, 锂-硫电池作为高效的能源存储和转化器件, 长期受困于硫(S)和硫化锂(Li2S)绝缘的瓶颈, 亟需开发高导电的储硫载体帮助锂-硫电池实现可逆充放电. 研究表明, 碳基复合材料具有强的导电能力, 且可以通过 表/界面和缺陷工程的技术制备获得, 易于实现多功能的耦合, 能够显著改善长循环中硫正极的流失, 缓解容量和倍率的衰减. 本综述通过总结碳基复合材料在锂-硫电池中的应用研究进展, 详细讨论功能化的碳基储硫载体和硫正极电化学性能的构-效关系, 分析材料的形貌、结构和组分的改变对硫正极电化学性能的影响. 最后, 对功能化碳基复合材料在锂-硫电池的实用化发展方向进行了展望.

本文引用格式

刘汉鼎 , 贾国栋 , 朱胜 , 盛建 , 张则尧 , 李彦 . 功能碳基复合材料在锂硫电池正极中的应用[J]. 化学学报, 2022 , 80(1) : 89 -97 . DOI: 10.6023/A21080381

Abstract

Carbon-based materials exhibit excellent physical and chemical properties due to their diverse structure, adjustable morphology and controllable composition. They have great application potentials in the field of new energy storage and conversion. Lithium-sulfur batteries as a kind of important new energy storage devices are trapped by the sulfur and lithium sulfide bottleneck of electronic insulation, which leads to irreversible charging and discharging processes. Fortunately, carbon-based composite materials have strong electrical conductivity. The coupling of multi-functions of the composite materials can improve the long-term utilization of sulfur and alleviate the attenuation of cycle and rate capacity. Functionalized carbon-based composite materials can be prepared through surface/interface and defect engineering techniques, which have attracted the attention and favor of scientific researchers. We review the preparation methods of functionalized carbon-based host materials and analyze the structure-function relationship of carbon-based composite materials and sulfur cathodes. We discuss the influence of the change of morphology, structure, and composition on the electrochemical performance of sulfur cathode. Finally, the feasibility of the functionalized carbon-based composite materials are prospected in the practical application of the lithium-sulfur battery.

参考文献

[1]
Peng, Z.; Ding, H.; Chen, R.; Gao, C.; Wang, C. Acta Chim. Sinica 2019, 77, 681 ; (in Chinese)
[1]
( 彭正康, 丁慧敏, 陈如凡, 高超, 汪成, 化学学报 2019, 77, 681.)
[2]
Wang, X.; Li, Y.; Du, L.; Gao, F.; Wu, Q.; Yang, L.; Chen, Q.; Wang, X.; Hu, Z. Acta Chim. Sinica 2018, 76, 627 ; (in Chinese)
[2]
( 王啸, 李有彬, 杜玲玉, 高福杰, 吴强, 杨立军, 陈强, 王喜章, 胡征, 化学学报 2018, 76, 627.)
[3]
Liu, H.; Chen, Z.; Zhou, L.; Pei, K.; Xu, P.; Xin, L.; Zeng, Q.; Zhang, J.; Wu, R.; Fang, F. Adv. Energy Mater. 2019, 9, 1901667.
[4]
Gao, L.; Bryan, B. A. Nature 2017, 544, 217.
[5]
Liu, H.; Chen, Z.; Zhou, L.; Man, H.; Zeng, Q.; Pei, K.; Chen, G.; Wang, Q.; Song, Y.; Li, X. Energy Storage Mater. 2021, 41, 703.
[6]
Ji, X.; Lee, K. T.; Nazar, L. F. Nat. Mater. 2009, 8, 500.
[7]
Zhou, F.; Li, Z.; Luo, X.; Wu, T.; Jiang, B.; Lu, L. L.; Yao, H. B.; Antonietti, M.; Yu, S. H. Nano Lett. 2018, 18, 1035.
[8]
Wang, Y.; Zhang, L.; Bi, J.; Yang, H.; Zhao, Z.; Mu, D.; Wu, B. Chin. J. Chem. 2020, 38, 1703.
[9]
Chen, F.; Cheng, X.; Zhao, Z.; Wang, X. Acta Chim. Sinica 2021, 79, 941 ; (in Chinese)
[9]
( 陈锋, 程晓琴, 赵振新, 王晓敏, 化学学报 2021, 79, 941.)
[10]
Liu, H.; Chen, Z.; Zhou, L.; Li, X.; Pei, K.; Zhang, J.; Song, Y.; Fang, F.; Che, R.; Sun, D. J. Mater. Chem. A 2019, 7, 7074.
[11]
Liu, Z. F. Acta Phys.-Chim. Sin. 2020, 36, 2004003 ; (in Chinese)
[11]
( 刘忠范, 物理化学学报, 2020, 36, 2004003.)
[12]
Chen, K.; Sun, Z. H.; Fang, R. P.; Li, F.; Cheng, H. M. Acta Phys.-Chim. Sin. 2018, 34, 377.
[13]
Sharma, P. K.; Cortes, M. A. L.; Hamilton, J. W.; Han, Y.; Byrne, J. A.; Nolan, M. Catal. Today 2019, 321, 9.
[14]
Liu, H.; Chen, Z.; Man, H.; Yang, S.; Song, Y.; Fang, F.; Che, R.; Sun, D. J. Alloys Compd. 2020, 842, 155764.
[15]
Chen, P.; Liu, Y.; Pan, P.; Fang, Y.; Shan, Q.; Feng, X.; Liu, R.; Lin, X.; Ma, Y. Chin. J. Inorg. Chem. 2021, 37, 1184 ; (in Chinese)
[15]
陈平, 刘逸然, 潘沛锋, 方亚男, 单淇, 冯晓苗, 刘瑞卿, 林秀婧, 马延文, 无机化学学报, 2021, 37, 1184).
[16]
Huang, Z.; Tang, M. L. J. Am. Chem. Soc. 2017, 139, 9412.
[17]
Zhang, J.; Yang, C. P.; Yin, Y. X.; Wan, L. J.; Guo, Y. G. Adv. Mater. 2016, 28, 9539.
[18]
Wujcik, K. H.; Pascal, T. A.; Pemmaraju, C.; Devaux, D.; Stolte, W. C.; Balsara, N. P.; Prendergast, D. Adv. Energy Mater. 2015, 5, 1500285.
[19]
Xu, J.; Zhang, W.; Fan, H.; Cheng, F.; Su, D.; Wang, G. Nano Energy 2018, 51, 73.
[20]
Yuan, Z.; Peng, H. J.; Hou, T. Z.; Huang, J. Q.; Chen, C. M.; Wang, D. W.; Cheng, X. B.; Wei, F.; Zhang, Q. Nano Lett. 2016, 16, 519.
[21]
Lin, D.; Liu, Y.; Cui, Y. Nat. Nano 2017, 12, 194.
[22]
Gao, J.; Lowe, M. A.; Kiya, Y.; Abruna, H. D. J. Phys. Chem. C 2011, 115, 25132.
[23]
Yu, Z.; Zhang, J.; Liu, T.; Tang, B.; Yang, X.; Zhou, X.; Cui, G. Acta Chim. Sinica 2020, 78, 114 ; (in Chinese)
[23]
( 于喆, 张建军, 刘亭亭, 唐犇, 杨晓燕, 周新红, 崔光磊, 化学学报 2020, 78, 114.)
[24]
Choi, J. W.; Kim, J. K.; Cheruvally, G.; Ahn, J. H.; Ahn, H. J.; Kim, K. W. Electrochim. Acta 2007, 52, 2075.
[25]
Chang, D. R.; Lee, S. H.; Kim, S. W.; Kim, H. T. J. Power Sources 2002, 112, 452.
[26]
Li, W.; Zhang, Q.; Zheng, G.; Seh, Z. W.; Yao, H.; Cui, Y. Nano Lett. 2013, 13, 5534.
[27]
Chen, J.-J.; Yuan, R.-M.; Feng, J.-M.; Zhang, Q.; Huang, J.-X.; Fu, G.; Zheng, M.-S.; Ren, B.; Dong, Q.-F. Chem. Mater. 2015, 27, 2048.
[28]
Zhu, W.; Paolella, A.; Kim, C.-S.; Liu, D.; Feng, Z.; Gagnon, C.; Trottier, J.; Vijh, A.; Guerfi, A.; Mauger, A. Sustain. Energ. Fuels 2017, 1, 737.
[29]
Saqib, N.; Silva, C. J.; Maupin, C. M.; Porter, J. M. Appl. Spectrosc. 2017, 71, 1593.
[30]
Dillard, C.; Singh, A.; Kalra, V. J. Phys. Chem. C 2018, 122, 18195.
[31]
Barchasz, C.; Molton, F.; Duboc, C.; Leprêtre, J.-C.; Patoux, S.; Alloin, F. Anal. Chem. 2012, 84, 3973.
[32]
Zou, Q.; Lu, Y.-C. J. Phys. Chem. Lett. 2016, 7, 1518.
[33]
Zhang, L.; Wang, Y.; Niu, Z.; Chen, J. Carbon 2019, 141, 400.
[34]
Yuan, L.; Yuan, H.; Qiu, X.; Chen, L.; Zhu, W. J. Power Sources 2009, 189, 1141.
[35]
Dörfler, S.; Hagen, M.; Althues, H.; Tübke, J.; Kaskel, S.; Hoffmann, M. J. Chem. Commun. 2012, 48, 4097.
[36]
Sun, L.; Li, M.; Jiang, Y.; Kong, W.; Jiang, K.; Wang, J.; Fan, S. Nano Lett. 2014, 14, 4044.
[37]
Fu, A.; Wang, C.; Pei, F.; Cui, J.; Fang, X.; Zheng, N. Small 2019, 15, 1804786.
[38]
Zhou, G.; Xu, L.; Hu, G.; Mai, L.; Cui, Y. Chem. Rev. 2019, 119, 11042.
[39]
Kim, Y.; Han, H.; Noh, Y.; Bae, J.; Ham, M. H.; Kim, W. B. ChemSusChem 2019, 12, 824.
[40]
Wei, Q.; Xiong, F.; Tan, S.; Huang, L.; Lan, E. H.; Dunn, B.; Mai, L. Adv. Mater. 2017, 29, 1602300.
[41]
Hu, G.; Sun, Z.; Shi, C.; Fang, R.; Chen, J.; Hou, P.; Liu, C.; Cheng, H. M.; Li, F. Adv. Mater. 2017, 29, 1603835.
[42]
Han, S. C.; Song, M. S.; Lee, H.; Kim, H. S.; Ahn, H. J.; Lee, J. Y. J. Electrochem. Soc. 2003, 150, A889.
[43]
Zheng, G.; Yang, Y.; Cha, J. J.; Hong, S. S.; Cui, Y. Nano Lett. 2011, 11, 4462.
[44]
Jian, Z.; Li, H.; Cao, R.; Zhou, H.; Xu, H.; Zhao, G.; Xing, Y.; Zhang, S. Electrochim. Acta 2019, 319, 359.
[45]
Zhong, M.-E.; Guan, J.; Sun, J.; Guo, H.; Xiao, Z.; Zhou, N.; Gui, Q.; Gong, D. Electrochim. Acta 2019, 299, 600.
[46]
Fang, R.; Li, G.; Zhao, S.; Yin, L.; Du, K.; Hou, P.; Wang, S.; Cheng, H.-M.; Liu, C.; Li, F. Nano Energy 2017, 42, 205.
[47]
Yang, X.; Yan, N.; Zhou, W.; Zhang, H.; Li, X.; Zhang, H. J. Mater. Chem. A 2015, 3, 15314.
[48]
Xiao, Z.; Xu, X.; Kong, D.; Liang, J.; Zhou, S.; Huang, X.; Yang, Q.; Zhi, L. J. Mater. Chem. A 2019, 7, 2009.
[49]
Zhao, Y.; Wu, W.; Li, J.; Xu, Z.; Guan, L. Adv. Mater. 2014, 26, 5113.
[50]
Xu, M.; Liang, T.; Shi, M.; Chen, H. Chem. Rev. 2013, 1, 3766.
[51]
Pei, F.; Lin, L.; Fu, A.; Mo, S.; Ou, D.; Fang, X.; Zheng, N. Joule 2018, 2, 323.
[52]
Shan, J.; Liu, Y.; Su, Y.; Liu, P.; Zhuang, X.; Wu, D.; Zhang, F.; Feng, X. J. Mater. Chem. A 2016, 4, 314.
[53]
Ji, L.; Rao, M.; Zheng, H.; Zhang, L.; Li, Y.; Duan, W.; Guo, J.; Cairns, E. J.; Zhang, Y. J. Am. Chem. Soc. 2011, 133, 18522.
[54]
Lin, H.; Yang, L.; Jiang, X.; Li, G.; Zhang, T.; Yao, Q.; Zheng, G. W.; Lee, J. Y. Energ. Environ. Sci. 2017, 10, 1476.
[55]
Kaiser, M. R.; Ma, Z.; Wang, X.; Han, F.; Gao, T.; Fan, X.; Wang, J.-Z.; Liu, H. K.; Dou, S.; Wang, C. ACS Nano 2017, 11, 9048.
[56]
Song, J.; Gordin, M. L.; Xu, T.; Chen, S.; Yu, Z.; Sohn, H.; Lu, J.; Ren, Y.; Duan, Y.; Wang, D. Angew. Chem. Int. Ed. 2015, 127, 4399.
[57]
Li, T.; Zhang, Y.; Chen, J.; Min, Y.; Wang, J. J. Inorg. Mater. DOI: 10.15541/jim20210303 ; (in Chinese)
[57]
( 李婷婷, 张阳, 陈加航, 闵宇霖, 王久林, 无机材料学报, DOI: 10.15541/jim20210303)
[58]
Li, Z.; Zhang, J.; Lou, X. W. Angew. Chem. Int. Ed. 2015, 127, 12886.
[59]
Yu, M.; Ma, J.; Song, H.; Wang, A.; Tian, F.; Wang, Y.; Qiu, H.; Wang, R. Energ. Environ. Sci. 2016, 9, 1495.
[60]
Li, R.; Zhou, X.; Shen, H.; Yang, M.; Li, C. ACS Nano 2019, 13, 10049.
[61]
He, J.; Luo, L.; Chen, Y.; Manthiram, A. Adv. Mater. 2017, 29, 1702707.
[62]
Zhang, N.; Wei, Z.; Feng, T.; Wu, F.; Zhao, T.; Chen, R. Acta Phys. -Chim. Sin. 2022, 38, 2107009 ; (in Chinese)
[62]
( 张楠祥, 魏壮壮, 冯涛, 吴锋, 赵腾, 陈人杰, 物理化学学报, 2022, 38, 2107009.)
[63]
Chen, K.; Sun, Z.; Fang, R.; Li, F.; Cheng, H. Acta Phys.-Chim. Sin. 2018, 34, 377 ; (in Chinese)
[63]
( 陈克, 孙振华, 方若翩, 李峰, 成会明, 物理化学学报, 2018, 34, 377.)
[64]
Zhang, M.; Chen, B.; Wu, M. Acta Phys.-Chim. Sin. 2022, 38, 2101001 ; (in Chinese)
[64]
( 张梦迪, 陈蓓, 吴明铂, 物理化学学报, 2022, 38, 2101001.)
[65]
Zhang, J.; Li, Z.; Chen, Y.; Gao, S.; Lou, X. W. Angew. Chem. Int. Ed. 2018, 130, 11110.
[66]
Jiang, H.; Liu, X. C.; Wu, Y.; Shu, Y.; Gong, X.; Ke, F. S.; Deng, H. Angew. Chem. Int. Ed. 2018, 130, 3980.
[67]
Hu, L.; Dai, C.; Liu, H.; Li, Y.; Shen, B.; Chen, Y.; Bao, S. J.; Xu, M. Adv. Energy Mater. 2018, 8, 1800709.
[68]
Li, W.; Ma, Q.; Zheng, Z.; Zhang, Y. Acta Chim. Sinica 2017, 75, 225 ; (in Chinese)
[68]
( 李宛飞, 马倩, 郑召召, 张跃钢, 化学学报 2017, 75, 225.)
[69]
Habib, A.; Florio, F.; Sundararaman, R. J. Opt. 2018, 20, 064001.
[70]
Huang, X.; Tang, J.; Luo, B.; Knibbe, R.; Lin, T.; Hu, H.; Rana, M.; Hu, Y.; Zhu, X.; Gu, Q. Adv. Energy Mater. 2019, 9, 1901872.
[71]
Coey, J.; Berkowitz, A.; Balcells, L.; Putris, F.; Parker, F. Appl. Phys. Lett. 1998, 72, 734.
[72]
Sun, Z.; Zhang, J.; Yin, L.; Hu, G.; Fang, R.; Cheng, H.-M.; Li, F. Nat. Commun. 2017, 8, 1.
[73]
Zheng, C.; Niu, S.; Lv, W.; Zhou, G.; Li, J.; Fan, S.; Deng, Y.; Pan, Z.; Li, B.; Kang, F. Nano Energy 2017, 33, 306.
[74]
Li, R.; Peng, H.; Wu, Q.; Zhou, X.; He, J.; Shen, H.; Yang, M.; Li, C. Angew. Chem. Int. Ed. 2020, 59, 12129.
[75]
Wu, H.; Li, Y.; Ren, J.; Rao, D.; Zheng, Q.; Zhou, L.; Lin, D. Nano Energy 2019, 55, 82.
[76]
Wang, Y.; Zhang, R.; Pang, Y.-C.; Chen, X.; Lang, J.; Xu, J.; Xiao, C.; Li, H.; Xi, K.; Ding, S. Energy Storage Mater. 2019, 16, 228.
[77]
Zhou, G.; Zhao, S.; Wang, T.; Yang, S.-Z.; Johannessen, B.; Chen, H.; Liu, C.; Ye, Y.; Wu, Y.; Peng, Y. Nano Lett. 2019, 20, 1252.
[78]
Li, Y.; Zhou, P.; Li, H.; Gao, T.; Zhou, L.; Zhang, Y.; Xiao, N.; Xia, Z.; Wang, L.; Zhang, Q. Small Meth. 2020, 4, 1900701.
[79]
Wang, C.; Song, H.; Yu, C.; Ullah, Z.; Guan, Z.; Chu, R.; Zhang, Y.; Zhao, L.; Li, Q.; Liu, L. J. Mater. Chem. A 2020, 8, 3421.
[80]
Du, Z.; Chen, X.; Hu, W.; Chuang, C.; Xie, S.; Hu, A.; Yan, W.; Kong, X.; Wu, X.; Ji, H. J. Am. Chem. Soc. 2019, 141, 3977.
[81]
Li, Y.; Wu, J.; Zhang, B.; Wang, W.; Zhang, G.; Seh, Z. W.; Zhang, N.; Sun, J.; Huang, L.; Jiang, J. Energy Storage Mater. 2020, 30, 250.
[82]
Zhang, L.; Liu, D.; Muhammad, Z.; Wan, F.; Xie, W.; Wang, Y.; Song, L.; Niu, Z.; Chen, J. Adv. Mater. 2019, 31, 1903955.
文章导航

/